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Preface 

This report is the culmination of my efforts to 

understand selected physical phenomena inherent in a 

thermonuclear plasma.  An incomplete computer simulation 

of inertially confined fusion, program MOXNEX, is the 

central vehicle in the study.  It is hoped that the modest 

development and documentation contained here may contribute 

to the understanding of others participating in programs 

in Nuclear Engineering and Physics at the Air Force 

Institute of Technology. 

I would like to thank Doctor George Nickel, not only 

for originating the project, but for extending it for 

further study.  I would like to thank Major Michael Stamm 

and especially my advisor, Lieutenant Colonel William Bailey, 

for patient consultation, advice, guidance and leadership. 

I would also like to thank Ms. Sharon Gabriel for manuscript 

preparation.  I thank Miss Patricia Horton for patience, 

understanding and support.  Finally, and most importantly, 

I would like to thank my parents, Joseph and Florence 

DeBruyne, for continued faith and encouragement in this and 

other endeavors. 

David A. DeBruyne 
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Abstract 

Energy transfer processes  in a thermonuclear plasma 

including Coulombic phenomena,  bremsstrahlung,   and Compton 

scatter  are  critically reviewed.     These processes  are 

incorporated  in a three  temperature,   inertially confined 

fusion computer  simulation which uses a one dimensional, 

spherical,   Lagrangian hydrodynamics  scheme.     The  computer 

code,   still in the validation phase, uses separate subroutines to 

model hydrodynamics, thermonuclear burn, neutron heating, alpha par- 

ticle heating, and energy transfer processes in CGS units. 
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ONE DIMENSIONAL ANALYSIS 

OF INERTIALLY CONFINED PLASMAS 

I.  Introduction 

Background 

The scarcity of energy resources is a growing national 

concern.  Nuclear energy has helped to ensure an independent 

and balanced energy supply system since the early 1960's 

through the use of fission reactors.  An energy source yet 

to contribute to civil energy reserves is nuclear fusion. 

Nuclear fission is the exothermic breakup of certain 

heavy elements into lighter components and is the driving 

mechanism for the nuclear reactors in service today.  Nuclear 

fusion is the exothermic combination of certain light nuclei 

into a heavier nucleus.  Two concepts show promise in 

exploiting nuclear fusion as an energy resource.  Magnetic 

fusion uses a magnetic field to confine a thermonuclear 

plasma.  Inertial confinement fusion bombards a fuel pellet 

with a concentrated energy pulse creating a thermonuclear 

plasma by the resulting compression and heating.  Both con- 

cepts warrant further study. 

Three technologies are being researched to supply the 

concentrated energy pulse for an inertial confinement 

scheme, namely: electron beams, ion beams, and laser beams. 

These energy sources, known as drivers, couple energy into 
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a fuel target only micrometers in diameter.  The surface 

layer of the target absorbs much more energy than the 

target interior.  Äs a result, the outer layer vaporizes 

and expands outward extremely rapidly.  This outward pres- 

sure must be balanced by inward pressure which is manifest 

in a shock wave.  The shock wave compresses the fuel and 

the compression action raises the temperature.  The result- 

ing thermonuclear burn will free large amounts of energy. 

In fact, this is a nuclear explosion; it is a miniature 

nuclear bomb.  Very careful design of the target using 

sophisticated physics optimizes the pellet compression and 

attains a maximum yield from the fuel mixture (see figure 1). 

The U.S. government has identified nuclear fusion as 

an inexhaustible energy source and sees its commercial use 

by 2020 (Ref 19:133-138).  In view of the continuing need 

for energy, the government has budgeted $593.7 million 

dollars for fiscal year 1981 (including Reagan cuts) and 

$650.3 million dollars for fiscal year 1982 for fusion energy 

research.  Of these totals, inertial confinement fusion will 

account for $199.6 million and $190.2 million for operating, 

capital equipment, and construction for fiscal years 1981 

and 1982, respectively (Ref 20:55-57). 

During the Winter Quarter 1980 at the Air Force Institute 

of Technology, Dr. George K. Nickel, assisted by class members, 

developed the computer code M0XNEX to model inertially confined 

fusion in DT microspheres while instructing a graduate class in 
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nuclear fusion.  The project was founded primarily on two 

prior studies, one completed by Keith A. Brueckner and 

Siebe Jorna at KMS Fusion in 1974 (Ref 4), and the other 

done by a team headed by Gary S. Fraley at Los Alamos 

Scientific Laboratory, also in 1974 (Ref 9).  Prior to his 

retirement from the Air Force and subsequent assumption of 

a position at the Los Alamos National Laboratory, Dr. Nickel 

entrusted the code to Dr. William F. Bailey for further 

study and development. 

Goals and Discussion 

The goals of this project are to develop a computer 

code, MOXNEX, to model an inertially confined fusion plasma, 

validate the code, and prepare the code for further studies 

in Nuclear Engineering and Physics at the Air Force Institute 

of Technology.  Though the code has yet to model fusion, 

progress has been made toward all three goals. 

As previously mentioned, Reference 9, published in 

The Physics of Fluids, was a major source for initial code 

development.  Upon critical examination, however, inconsis- 

tencies became apparent in the equations of Reference 9 

in the area of radiation-electron energy transfer.  These are 

mentioned in the text and appendices. Dr. Nickel's efforts to 

resolve these inconsistencies through communication with the authors 

were unfruitful.   Development of consistent formulation, then, 

was necessary.  The development of the radiation-electron 

--—'  
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energy transfer equations is one of the major topics of 

this report. 

Additionally, simplifications were included in the 

coding to expedite code construction.  One such simplifi- 

cation was the bremsstrahlung Gaunt factor being set equal 

to 1. A complicated integral was evaluated numerically 

and the resulting values were  fit with  an  exponential 

function. 

Validation is required to enable its use as a vehicle 

for further study.  Confidence in the MOXNEX code will allow 

its application to numerous areas of education and research. 

Code hydrodynamics were examined to provide some portion of 

this confidence. 

Finally, code documentation is necessary to provide 

user utility.  Under Dr. Nickel's tutelage, each member of 

the Fusion Engineering and Devices class, taught during the 

Winter Quarter of 1980, contributed to the construction of 

the MOXNEX code.  Because of the diversity of the originators, 

the code is somewhat disjointed and is not strongly supported. 

Notes from each of the class members and from Dr. Nickel 

are assimilated and presented in this report. 

The presence of an inertial fusion code at the Air 

Force Institute of Technology provides Physics Department 

programs with a valuable tool. Classes in nuclear engineer- 

ing, engineering physics and electro-optics may easily find 

uses for the MOXNEX code and its results.  Classes in 



nuclear explosives, fusion engineering, plasma physics 

laser studies, and others may be directly supported by 

code use. 

Additionally, further code development might also be 

undertaken as design study or thesis projects.  Extension of 

the code to include driver input would make study of laser- 

plasma coupling possible. 

With this in mind, much work is required for completion 

of the MOXNEX code.  It is hoped that it can be a valuable 

vehicle for the Department of Physics at the Air Force 

Institute of Technology. 

Scope 

This analysis is concerned  with  the  thermonuclear 

burn and related hydrodynamic and energy transfer processes, 

code validation, and documentation of the coding.  Mechanisms 

for the initial delivery of energy were not to be considered, 

nor was the coupling of energy to the plasma investigated. 

Code Synopsis with Assumptions 

The three temperature MOXNEX code models inertially 

confined fusion in deuterium-tritium microspheres using 

separate ion, electron, and radiation temperatures.  The ions 

and electrons are modelled by a Maxwellian energy distribution 

and the photons are modelled by a Planckian distribution. 

The program is written in Fortran V using the central program 
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to call each of seven primary subroutines.  A general 

flowchart is seen in Figure 2.  The subroutines, tasks 

performed, and assumptions are discussed briefly in the 

following paragraphs.  Constant temperatures and number 

densities are assumed at the time of each subroutine call. 

Appendix A is a program listing and Appendix B is a glossary 

of variables. 

1. Subroutine GDATA.  This subroutine sets initial 

conditions by initializing variables and is called one 

time prior to execution of physical processes.  Energy is 

deposited in the microsphere by initializing ion, electron, 

and radiation temperatures to selected levels at selected 

cell locations.  Compression is also set as an initial 

condition by specifying an initial density. 

2. Subroutine HYDRO.  Subroutine HYDRO is a one- 

dimensional spherical Lagrangian hydrodynamics code. It 

accounts for the hydrodynamics of the cells and the change 

in temperatures due to PdV work. 

Assumptions in HYDRO include (1) all materials in 

the microsphere are an ideal gas, (2) pseudo-viscous pressure is 

due only to the ions, (3) electron degeneracy occurs only 

in the deuterium-tritium fuel regions and can be approxi- 

mated with an effective temperature to account for additional 

pressure, (4) total system PdV work changes can be divided 

between the electron, ion, and radiation species  based on 

the pressure of each component.  Viscous pressure is set 



"•—-' •'•»•"•"•" 

PROGRAM     MOXNEX 

CALLS   IN THE ORDER   INDICATED 

GDATA 

££\'= [FA^   INITIAL DATA 

' 4 
HYDRO 

fNAMIC 
VRES E 

*D  UPDATE 
IOPK 

COMPUTE HVDROD> 
TEFPERAI 

PARAT'STEKS   A» 
GSED  ON  PDV  l> 

I 
TBURN 

COMPUTE   T'   tZ-'—.'J •i  PATES  A'O  ADJUST   ION  NUMBER 

E 
NUHEAT 

COMPUTE MEDTROM HEAT1*3 

i 
ALPHA1 

ADJUST  ALPHA NUMBER AfG> COMPUTE ALR'HA  KSÜTJ, 

COMPUTE ENERGY TRANSFER  BETWEEN SPECIES 

OUTRUT 

PRINT  OUTPUT  PARAMETERS 

Figure 2.    General flowchart for Program MOXNEX 
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to zero when the cell has expanded during the previous time 

step. 

3. Subroutine TBURN.  The TBURN subroutine provides 

reaction rates of the deuterium-tritium fusion reaction. 

Deuterium-deuterium reactions are not considered.  Tritium 

created by deuterium-deuterium reactions is not included. 

If the ion temperature is below a specified ignition temper- 

ature of 1 kev, a figure based on bremsstrahlung power lost, 

no reactions are computed in any cell.  The number of deu- 

terium and tritium ions burned are subtracted from the totals 

in each cell. 

The hydrogen fuel mix is equal amounts of deuterium and 

tritium at all times in TBURN. Therefore, the hydrogen number 

density is used in modelling the reaction rate density. 

The Maxwellian velocity distribution weighted average of 

cross section for the deuterium-tritium reaction is modelled 

in two ranges of ion temperature. Curve fits to data above 10 

kev below 10 kev ion temperature are used for the model. 

4. Subroutine NUHEAT.  Subroutine NUKEAT calculates 

total neutron heating in each cell.  Deuterium-tritium react- 

ions are counted during one cycle and, by assuming isotropic 

production of one neutron per reaction, the new neutrons are 

placed at the center of the microsphere and attenuated during 

their pathlength through the plasma.  Using an energy of 

14.1 Mev for the neutrons and a cross section of 0.8 barns 

for collisions with deuterium, tritium and helium nuclei, 
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the number of interactions per cell is ascertained.  An 

average energy transfer per collision is used to deposit 

energy into a cell based on the specific ion numbers in 

the cell. 

5.  Subroutine ALPHA1.  This subroutine is designed to 

compute the energy deposited in each cell by monoenergetic 

3.5 Mev alpha particles born in the deuterium-tritium 

reactions.  Additionally, it computes the number of alphas 

produced in each zone, adjusts the helium particle mass 

number in each zone, and adjusts ion and electron temperature 

in each zone.  Collisions with electrons are assumed to 

dominate the alpha particle deceleration and are also 

assumed to provide no significant scatter to the alpha parti- 

cles.  Upon reaching an area where ionic collisions dominate 

energy loss, the motion of the alpha particle is stopped 

and all residual energy is dumped in the current cell. 

Subprogram ALPHA1 calls 14 other subroutines to 

complete its tasks.  General program organization is seen 

in Figure 3. 

Subroutine ALPHAl updates the total heat added, the 

number of alpha particles, total mass, electron temperature, 

and ion temperature in each cell.  Geometry subroutines 

compute alpha particle position, direction and cell number 

as the particle slows.  An integration increment is computed 

to integrate dE/ds along the path length in each cell using 

a 4th order Runge-Kutta method.  The energy deposited in 

each cell is partitioned between ions and electrons. 

10 
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6. Subroutine HTFLX.  This subroutine computes the 

energy transfer between the radiation, electron and ion 

components.  Drawing heavily on Appendix B of Reference 9, 

HTFLX first models electron-ion energy exchange and electron 

heat conduction.  Ionic heat conduction is considered negligible. 

Energy exchange between the photons and electrons is then 

calculated.  The energy exchange between photons and ions 

is considered negligible. 

7. Subroutine OUTPUT.  This subroutine prints a variety 

of information on haid copy including iteration number, time, 

11 



time increment used during the iteration, input energy, and 

output energy.  Additionally, OUTPUT provides current cell 

radius, velocity of the cell wall, reactions during the 

iteration, relative density, electron, ion, and radiation 

temperatures, energy output, heating, and neutron fluence 

for each cell.  Subroutine OUTPUT can be called at convenient 

places in the main program to provide timely output of data. 
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Approach 

This report will briefly describe phenomena important 

to nuclear fusion for a deuterium-tritium fuel.  Energy 

transfer processes in the plasma will then be addressed 

including Coulomb collisions, bremsstrahlung and Compton 

scatter.  The equations used to code MOXNEX are then 

discussed as each subroutine is examined in detail. 

Chapter IV discusses the validation of the hydro- 

dynamics using a quasiequilibrium study and a point explo- 

sion.  Chapter V addresses recommendations and code improve- 

ments . 

Appendices include a program listing, a glossary of 

variables, equation derivations, and discussions of pertinent 

items.  Each is referred to in the text where appropriate. 
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II.' Physical Processes 

Introduction 

Before looking at the MOXNEX code, some basic phenomena 

concerning thermonuclear plasmas and fusion will be examined. 

The question of why fusion is attractive will be addressed, 

as will the nuclear reactions of interest.  Knowing why the 

process is attractive, attention will be turned to the 

question of feasibility.  A simple three species plasma 

model is then presented and energy transfer processes between 

these species examined.  The three species plasma model is then 

generalized to a thermonuclear three species model that describes 

all MOXNEX processes. 

Fusion 

As mentioned previously, energy resources are a growing 

national concern.  The following paragraphs, then, will 

reveal why energy can be attained from a fusion technology. 

The average mass per nucleon varies slightly from 1 

atomic mass unit in most nuclei.  Table 1 gives values for 

the average mass per nucleon of selected light nuclei.  If 

nuclear reactions can be produced such that the total mass 

of the reactants is greater than the total mass of the 

products, a net release of energy of E = (Am)c2 is attained. 

The quantity Am is known as mass defect. 

14 



Table 1 

Average Mass per Nucleon for Selected Light Nuclei 

(Refs 16 and 5) 

Nucleus Ionic Mass (amu) Mass per Nucleon (amu) 

n 1.008665 1.008665 

D 2.C13553197 1.0067766 

T 3.015501407 1.0050047 

He3 3.014932114 1.0049774 

He4 4.001506114 1.0003765 

For instance, consider the reaction 

D+T-* He4 +" (i) 

This will probably be a central reaction  in a first generation 

fusion reactor   (Ref 6:279).     The  total nuclear mass  of deuterium 

and  tritium  is  5.029254604  amu  and  the  total mass  of  a helium-4 

nucleus  and a neutron  is  5.010171114  amu.     The difference  is 

0.0188349 amu.     This  equates  to an energy  release of  17.609889 

Mev.     The process of exothermically combining nuclei  is known 

as  fusion. 

Although   many   fusion   reactions   are . possible,    the   primary 

reactions  of  interest for hydrogen fusion are  listed  in 

15 

^   _n« 



•» 

Table 2.  The excess kinetic energies of the reaction 

products are indicated with the reaction products. 

Table 2 

Reactions of Interest for Hydrogen Fusion 

(Ref 19:2) 

D + D •+ JHe (0.82 MeV) + n (2.45 MeV) 

D + D * T (1.01 MeV) + H (3.02 MeV) 

D + T •»  HHe (3.5 MeV) + n (14.1 MeV) 

D + °He fHe (3.6 MeV) + H (14.7 MeV) 

In order to bring about fusion reactions, it is neces- 

sary that the ionized nuclei collide with sufficient energy 

to overcome Coulombic repulsion. Classically, the relative 

energy required to overcome electrostatic repulsion for 

hydrogen is 0.28 Mev (Ref 10:7). The quantum mechanical 

effect of barrier penetration, however, reduces this energy 

threshold. 

The nuclei are distributed in kinetic energy or velocity 

in a Maxwellian distribution.  The average kinetic energy 

of a particle in a Maxwellian distribution is y  kT. . 

There are decreasing, but still finite, numbers of particles 

at many kT., however, and the high energy of the particles 
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in the "Maxwellian tail" is therefore a notable influence in 

overcoming Coulombic repulsion.  These two factors, barrier 

pentration and the high energy tail on the Maxwellian 

distribution of the ions, make consideration of fusion reac- 

tors feasible. 

Again, for a feasible system, the fusion reaction rate 

must be at least finite.  Generally, a reaction rate may 

be expressed 

RR-n,n^CNv (2) 

where 

RR is the reaction rate density 

n,  is the number density of species 1 

n-j  is the number density of species 2 

(T    is the reaction cross section 

v  is the relative velocity of the reactants. 

The nuclear cross sections in Eq (2) are strong functions 

of velocity or kinetic energy.  Averaging over the entire 

range of relative velocities, the product 0"V    can be 

represented as an expectation value ^rv)  .  Values of ^STv*} 

which assume a Maxwellian particle distribution are shown 

in Figure 4.  Notable from Figure 4 is the deuterium-tritium 

reaction is much more likely than the deuterium-deuterium 

reaction at any given kinetic temperature. 
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The excess kinetic energy may be redeposited in the 

plasma or it may escape from the mixture.  In order to 

sustain the thermonuclear burn, the redeposition of energy 

into the plasma is preferable.  If more energy can be retained 

in the plasma, less energy is required from an outside input. 

This energy may be transferred from the reaction products by 

Coulomb collisions, participation in elastic collisions, or 

radiation-electron energy transfer.  The process of redeposit- 

ing the particle energy released by fusion reactions back 

into the plasma is known as bootstrap heating. 

Singling out the deuterium-tritium reaction, 

D * T-> He4 (3.5 M*0+ n(l4J Mev) (3) 

the neutrons can participate only in elastic collisions, but 

the alpha particles can participate in all three mechanisms 

named above. 

The alpha particle path is dominated by Coulomb 

collisions with both electrons and ions.  Thus, much or all 

of the 3.5 Mev possessed by the alpha particle is retained 

in the plasma promoting further fusion. 

In order to retain the 14.1 Mev of the neutron within 

the plasma, high plasma densities are necessary (Ref 4:330). 

The mean free path of a 14.1 Mev neutron at typical magnetically con- 

fined thermonuclear plasma densities (10  ions/cm ) is ~-109 cm3 so 

neutrons are difficult to retain.  The energy transfer from 
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radiation energy is also generally a small factor.  The 

photon mean free path for particle number densities  lO1^ crm^ 

is ^10"  cm (Ref 10:29).  Significant bootstrap heating 

comes primarily from alpha particle Coulomb collisions for 

the reaction given in Eq (3) . A generalization can be made to 

other reactions   that significant bootstrap heating comes 

primarily from the charged particle reaction products. 

A primary energy loss mechanism is bremsstrahlung.  As 

ionized particles are deflected by Coulomb interactions, 

they continuously radiate.  The rate at which energy is 

radiated by an accelerating charge of  z = 1, Pr, is expressed 

by the Larmor formula, namely, 

where 

e  is the electronic charge in statcoulombs 

a  is the acceleration in cm/sec^ 

c  is the speed of light in cm/sec. 

This newly created photon energy can be redeposited through 

inverse bremsstrahlung or Compton collisions, but it may 

also escape the plasma.  An optically thick plasma is 

desirable to recapture this radiation. 

If the rate of energy loss from the plasma due to 

bremsstrahlung is greater than the rate of energy deposition 

by bootstrap heating, energy must be put into the system 
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from an outside source in order to sustain the thermonuclear 

burn.  If the energy deposition rate is greater than brems- 

strahlung loss rate, reactions may continue as long as fuel 

is available.  A bremsstrahlung energy loss rate may be calcu- 

lated as a function of number density and temperature.  Postu- 

lating that 100% of the charged particle energy is retained 

in the plasma, a bootstrap heating rate may also be calculated 

as a function of number density and temperature. 

Fortunately, as ion temperature increases, the bootstrap 

heating rate increases faster than the bremsstrahlung loss 

rate (Ref 10:33-36).  The temperature at which the bootstrap 

heating rate equals the bremsstrahlung loss rate is known as 

minimum ideal ignition temperature.  Below this temperature, 

energy must be pumped into a system to realize sustained thermo- 

nuclear burn.  Above this temperature, the reaction may be 

self-sustaining and energy can be extracted from the system. 

Noting the charged particle products of the reactions 

from Figure 2 and the probability of reactions from Figure 3, 

this "ideal ignition temperature" for deuterium-tritium is 

about 4 kev and for deuterium-deuterium is about 36 kev, 

almost an order of magnitude difference (Ref 10:35). 

These temperatures correspond to particles with high 

kinetic energies which tend to diffuse the plasma.  Coulomb 

repulsion adds to dispersion effects.  Confinement of the 

plasma for times long enough to achieve an economical energy 

gain, therefore, becomes difficult.  Since the power density 
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depends on the reactant number density, the confinement 

time for energy breakeven is a function of the reactant 

number density.  This can be stated in the Lawson criteria, 

n"r* ^ lO    ^s^l&r«? (5) 

where T   is the confinement time (Ref 6:282). 

Magnetic fusion relies on various geometries of magnetic 

bottles to confine the ionized particles.  Typical number 

densities for magnetic fusion are about 10   particles per 

cubic centimeter.  This requires a confinement time of about 

0.1 seconds to achieve energy breakeven. 

Inertial confinement, on the other hand, realizes 

2 fs 
number densities of about 10  particles per cubic centi- 

meter and so requires a confinement time of only about 10 

seconds (Ref 6:282). 

Additionally, fusion reactors have some advantages over 

fission reactions.  Deuterium for fusion fuel is readily 

available in seawater.  Though tritium is not present in 

large enough quantities to be of interest in seawater and 

must be processed from other sources, deuterium is present 

in a ratio of about 1 deuterium atom to 6500 hydrogen 

atoms in ordinary water (Ref 10:2). 

Another advantage is that radioactive reactants and 

by-products are minimized using fusion when compared with 

fission.  Neutrons do activate some nuclei in the local 
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environment and some materials desirable for fusion reactions 

are naturally radioactive; for instance, tritium.  Fusion 

reactions, however, create no radioactive fragments which 

are a necessary by-product of fission. 

In summary, these paragraphs have tried to briefly 

develop some of the important concepts for nuclear fusion and 

fusion technology.  Mass defect, barrier penetration, the 

high energy "tail" of the Maxwellian distribution, reaction 

rates, bootstrap heating, bremsstrahlung losses, ideal ignition 

temperature, and the Lawson criteria are all concepts central 

to nuclear fusion and fusion reactor technology.  A quantita- 

tive physical model is now required that can follow some of 

these concepts in a time history. 

Three Temperature Model 

Knowing some of the central concepts of fusion, a physical 

model is now required that can follow macroscopic quantities 

through a time history of a fully ionized plasma.  A simple 

yet physically accurate model is desired. 

The motivating basis for researching nuclear fusion is 

that it offers the possibility of net energy gain.  Energy 

may be calculated from power over a complete time history 

and power may be computed from number densities and particle 

velocities or particle energies.  Ionic hydrogen will be the 

fusion reactants in the MOXNEX code so ion number densities 

and ion energies will be required to compute overall energy 

output.  Ion number densities can be characterized by an 
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energy distribution.  An ion species will be characterized 

by a Maxwellian distribution which can be denoted by a 

number density per unit energy at a given kinetic temperature. 

Ion-ion collisions partition energy throughout the species to 

attain a Maxwellian distribution (Ref 26:136). 

But ion-ion collisions are not the only collisions 

occurring.  Fuel pellet atoms all bind one electron prior to 

the driver pulse.  Complete ionization, then, means as many 

electrons are present as are ions.  Electron-electron col- 

lisions partition energy in the electron species also in a 

Maxwellian distribution (Ref 26:136).  Electron number density 

can also be identified as a function of kinetic temperature. 

This temperature may differ, however, from the ion temperature 

(Ref 26:136). 

If these temperatures do differ, equilibration between 

species will take place through electron-ion collisions. 

Energy exchange between these species must also be tracked. 

As mentioned in the previous section, Coulombic accel- 

eration of the electrons by the ions will result in brems- 

strahlung so a photon species is present also.  A third 

species energy distribution is required.  These photons may 

be characterized by a Planckian distribution which requires 

a third species temperature.  Additionally, the radiation 

may couple energy back into the electron species by either 

inverse bremsstrahlung or Compton scatter. 
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The minimum requirements, then, are two Maxwellian 

distributions and a Planckian distribution characterized 

by three species temperatures.  All species can interact 

with each other, although the photons will interact preferentially 

with the electrons because of the mass difference between the 

ions and electrons.  In addition to energy flow between species, 

energy flow in space, diffusion, will affect the energy distri- 

butions.  The more massive ions will move relatively slowly 

compared to the lighter electrons, but electron diffusion must 

be considered.  Also, radiation diffusion will carry energy 

through space. 

A simple model is now apparent.  A three temperature 

model using separate ion, electron and radiation temperatures 

accounting for electron and radiation diffusion may be used 

to model a fully ionized plasma.  Such a model is illustrated 

in Figure 5. 

The task at hand now is to develop understanding of the 

pertinent energy transfer processes. This will be the topic 

of the next section. 

Coulombic Phenomena 

Electrostatic encounters between particles of charge 

Z,  and Z„ which are separated by a distance r are described 

by the Coulomb potential, namely 

V(r) - £i£ m 
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In a plasma, these electrostatic forces contribute signi- 

ficantly to energy transfer between species and to species 

diffusion. 

The distance r is a determining factor in the magnitude 

of the resulting force.  In the case of charged particles 

possessing kinetic energy, an impact parameter, b, is often 

used to denote the distance of closest approach.  Figure 6 

illustrates the impact parameter of approaching particles 

in the rest frame of particle 2. 

Figure 6.  Illustration of Impact Parameter 
Between Two Charged Particles 
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Figure 5 assumes a small momentum transfer so that particle 

1 is basically undeflected from straight line motion.  In a 

center of mass frame, the paths of both particles is actually 

hyperbolic. 

In space, the range of the Coulomb force is infinite and 

there is no maximum interaction distance.  In a plasma, 

however, even though the entire system is electrically neutral, 

random thermal motion creates small deviations from strict 

electrical neutrality.  Electrostatic forces accentuate this 

and a time average will show a net negative charge density 

around an ion and a net positive charge density around an 

electron.  This net opposite charge may be regarded as an 

"atmosphere" around each charged particle (Ref 10:84).  The 

radius of this atmosphere based on a Maxwellian distribution 

and a Coulomb potential expressed in Poisson's equation is 

(Ref 6:10).  The quantity f{, n  is known as the Debye length 

and determines the maximum shielding or screening distance 

at which a Coulomb force can be felt in a plasma.  Notice 

that as electron temperature increases, the Debye length 

increases.  It is also a function of electron number density. 

The Debye length is a dynamic parameter and the pseudo 

"atmosphere" is not static. 
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Coulomb collisions can be divided into short range 

encounters and long range encounters.  The Debye length is 

the limiting distance for long range encounters.  The 

charged particle is "screened" from charged particles farther 

away because of the opposite charge "atmosphere." Because 

of the large number of particles within a Debye radius, the 

number of long range encounters is large.  The number of 

long range encounters is so great that their effect greatly 

outweighs the effect of short range collisions (Ref 26:123). 

The cross section for a short range encounter resulting 

in an angle of deflection from its original path of 90° 

is 

<^R-   fc» (8) 

where E,  is the energy of the less massive particle in the 

rest frame of the more massive particle.  In a hydrogen 

plasma, this can be an electron passing any positive particle. 

A long range encounter may be described by a change in 

momentum such that 

fat     •    "initial W 

This is equivalent to multiple scatters summing to a total 90* 

deflection. The cross section for this type of interaction is 
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where E,  is again the energy of the less massive particle 

in the rest frame of the more massive particle, and 

A - ba (ID 
min 

or 

A  =  if- (12) 
min 

Both short range and long range Coulomb cross sections are 

discussed in Appendix C. 

Comparing Eqs (8) and (10), note that the long range 

cross section is ^SilnA greater than the short range cross 

section. Also noting that typical values for Inh     are between 

10 and 25 at thermonuclear temperatures and densities 

(Ref 10:94), the long range interaction is much more dominant. 

Relaxation times are often used to describe long range 

encounters and may be defined as the time required for the 

momentum changes to sum such that 

ffif     -    initial W 

The long range cross section given in Eq (10) yields for 
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electron-ion relaxation time 

\'*r^ 
t     ~ (2m.rc 

4TT e*n; Jby\J*ti 
(14) 

Coulomb interactions between ions and electrons at 

different temperatures will eventually lead to equilibrium. 

Based on Maxwellian velocity distributions for both ions 

and electrons and defining t   from the relation given by 

Spitzer (Ref 26:135), 

dt 
T, - T» 

u % 

where T.  is species kinetic temperature,  t   can be 

written 

\*k 

(15) 

(16) 

Relaxation times and equilibration times are further 

discussed in Appendix N. 

In addition to electron-ion energy exchange, Coulomb 

collisions add to energy transfer through heat flow.  Heat 

conduction may be approached in the same manner as other 

transport phenomena using a conductivity coefficient 

(Ref 26:143). 

In the presence of a temperature gradient (assuming 

no external electric field), the flow of heat, Q, can be 
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described by 

Q=KVT m 

where T is temperature and K is the conductivity coefficient. For 

a Lorentz gas, a fully ionized gas in which the electrons are assumed to 

interact only with ions which are all at rest (Ref 26:138), this coeffi- 

cient is given by Spitzer (Ttef 26:144), 

T (18) 

Heat flow caused by a temperature gradient results in a 

current, however, and this current produces a secondary 

electric field which reduces the flow of heat by a factor of 

e which is dependent on the net  Z  of the material. 

Additionally, for an actual gas  K is further reduced by a 

factor of  6T which is also dependent on the net  Z . 

Employing these terms, the conductivity coefficient becomes 

(19) 

A conductivity coefficient may be derived for any charged 

species.  Equation (19) gives this coefficient for the 

electron species.  As the least massive charged particles in 

a thermonuclear plasma, the electrons should dominate heat 

transport if the electron temperature is not very much smaller 

than the ion temperature. 
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Bremsstrahlung Processes 

Bremsstrahlung occurs when a particle having charge and 

finite kinetic energy is accelerated, resulting in a photon 

being radiated and decreased kinetic energy of the original 

moving particle.  This occurs typically in a thermonuclear 

plasma as an electron is accelerated as it passes a positive 

ion.  The instantaneous power radiated in a non-relativistic 

acceleration is given by the Larmor formula (Ref 14:469), 

here for Z = 1, 

2 e2a2 (4) 

A bremsstrahlung  emission  is   shown  symbolically   in  Figure   7. 

for  the  case  of an electron passing  a positive  ion. 

Figure   7.     Symbolic   Illustration of  Bremsstrahlung 
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Inverse bremsstrahlung occurs as a photon adds energy 

to a particle in the presence of another particle.  The second 

particle is necessary to conserve momentum.  In the case of 

a photon adding energy to an electron in the presence of a 

positive ion, typical in a thermonuclear plasma, the kinetic 

energy of the electron is raised and the photon is absorbed. 

This is represented symbolically in Figure 8. 

Figure 8.  Symbolic Illustration of Inverse Bremsstrahlung 
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With these pictures in mind, some of the theory pertinent 

to bremsstrahlung interactions will now be developed.  The 

equations presented in the following discussion and Appendices 

E through G are prompted by the unpublished notes of Dr. 

George H. Nickel.  Significant portions of the development 

are contained in Reference 22. 

The bremsstrahlung cross section for a non-relativistic 

Coulomb collision is given by Jackson (Ref 14:513) as 

^•^OT)'ß=A(^/ (20) 

where 

Z,  is the charge of the radiating particle 

Z-  is the charge of the particle providing the 

accelerating force 

M  is the mass of the radiating particle 

v  is the velocity of the radiating particle 

or E  in the rest frame of the ion. 

This cross section is also supported by Bethe and Heitler 

(Ref 14:512).  Its dimensions are area per energy. 

For the case of a thermonuclear plasma, the radiating 

particle is usually an electron so that Z = 1 and M = m 

and the particle providing the accelerating for ionic hydrogen 

or ionic helium.  Referring to Appendix E and denoting the 
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ionic charge as simple  Z , Eq'(20) becomes 

3 £.£»  v    ^        y 

where 

^ = ex/fie is the fine structure constant 

E is the electron energy 

E is the photon energy 

The bremsstrahlung reaction rate density is then 

RRa s n;nt(E«)vÄ(feifv) 

(21) 

(22) 

which has dimensions of reactions per volume per time per 

square energy.  The inverse bremsstrahlung cross section may 

be derived using this reaction rate density and assuming 

local thermodynamic equilibrium exists.  The inverse brems- 

strahlung cross section, also discussed in Appendix E, is 

Vw, \   /       ^ 

53) 

with dimensions area per energy. 

The reaction rate densities for the respective processes 

can then be expressed using these cross sections. The brems- 

strahlung reaction rate density can be written explicitly as 
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•R V vfte^tfi^ fr»^   d E" (l-^**) (24) 

which has dimensions of reactions per volume per time.  From 

this, the power density can be expressed as 

? - "i^fr>(^)*fcJ?(*.^(T4^« 

which has dimensions of energy per unit volume per unit time. 

The enhancement factor 

' + *M =  j _ U/Wf (26) 1      e 
used for the bremsstrahlung equations is derived in Appendix D. 

For inverse bremsstrahlung, the reaction rate density 

and the power density can be expressed as 

-co r» 

"''* (27) 

JOD f 00 

r -/a 

and 

?xe   **KC \fit(Bt)iU W*»)^ (*«.**)** J** 

Substituting explicit  expressions   into    Rj   ,   changing 

variables  to 

(28) 
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X* 

i- fcv 

and noting 

Y* 7r 

results  in 

?^t^^|V-cV,c'M'/j iL £$yt\z*U*(y7*/^7)c/; 

(29) 

(30) 

(31) 

(32) 

Analogous manipulations  can be  performed  to  refine     P,« 

This   is 

^'«*Hl^**'<***(*tfl^i{y K*M***&* 
(33) 

These two power densities can be expressed using a 

Gaunt factor G()f). , where  j  denotes either pure brems- 

strahlung or pure inverse bremsstrahlung.  Using this Gaunt 

factor, Eqs (32) and (33) may be written as 
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^ • **is3r***c%[vit<('\ (kT° -kTr) 
(34) 

where 

G(*]<>' TTjfe^W*"^ ^^J x <3S 

and 

^r n; n< ¥ 6feT2V r-H c' (»T15 ^ ^Te •fe7;}'5 
6) 

where 

GW *p e       e •MVX«V/VH7<1X(37) 

Recognize that these power densities are limiting cases. 

Equation (34) models a case of pure bremsstrahlung and 

Eq (36) models the case of pure inverse bremsstrahlung.  For 

practical applications, the power density equations must be 

extended from the limiting cases of either pure bremsstrahlung 

or pure inverse bremsstrahlung to a situation of competing 

processes.  This is done by simple subtraction. 

Note that the power density equations have a common 

coefficient, which may be denoted by A* , and is 
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Substituting explicit expressions for o< ,  r  ,  n  , and 

n. , this becomes 

A" . 3z f 2 \/z e'Al* • f?\ e1   £i_ Q(y) 
(39) 

Thus the net rate of energy flow into the radiation field 

from bremsstrahlung processes is 

,N£T v - * - * (40) 

which is 

?/"- A» fl*-JttXfi0%-cfl)*J (41) 

Denoting 

GCr) = 6(Y%-6(y):{ (42) 

this can be written 

f/r=^r(feT.-Arr)<sa) (43) 

where 
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1*71- **#-')* 1   \ A    '      € W)*fr\tlF^MU«M&*JZfr* tM) o 

or 

c-/)Ci- A«*; («i 

where 
at» 

Note that  G(]()  is dimensionless. 

The values of G()f)  as )[-• 0  and as V*-* co     may be 

found analytically.  These are 

6(6) « 1 

(46) 

(47) 

and 

(48) 

Appendix F discusses the reaction rate densities, power 

densities, Gaunt factors, and the bremsstrahlung coupling 

coefficient in more depth. Appendix G discusses the Gaunt 

factor and its limiting values. 
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Compton Processes 

The quantum theory of light postulates that photons 

behave like particles except for the absence of rest mass. 

This concept provides a foundation for radiation-material 

energy interaction to be treated as an elementary mechanical 

collision.  Figure 9 symbolically illustrates such a 

collision known as a Compton collision. 

SCATTERED 
EiECTWCiM 

I ( 
Figure 9 .     Symbolic  Illustration of a Compton Collision 
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The energy transfer can be described by the wavelength change 

of the photon which is (Ref 2:71) 

y-*= £rc«-£os^ (49) 

Since the photon is not absorbed and a photon exits from 

the interaction, Compton collisions are a scattering process 

as opposed to absorption processes such as pair production 

or photoelectric effect. 

The classical cross section for Compton scatter is 

(50) 

where 

Po 8   e\ 
(51) 

is the classical electron radius.  This cross section, known 

as the Thomson cross section, becomes suspect at higher 

photon energies. 

At higher photon energies, Compton scatter can be des- 

cribed by 

(52) 

(Ref 3:124), where E„  is the energy of the incident photon. 
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This is known as the Klein-Nishina cross section and applies 

only for photon energies such that E„« m c^ 

Inverse Compton collisions are also possible and such an 

interaction is symbolically represented in Figure 10. 

1  % 

^ 

^ <^r 

(ST vS) 

Figure 10. Symbolic Illustration of an Inverse Compton Collision 

44 



Note that in both processes a photon is emitted.  Again, 

since photons are Bose particles, the photon population will 

be enhanced by photons already existing in the plasma and 

this enhancement factor can be expressed as 

i + n„(fO =  L 
I- e */*Tf 

Again, much of the following development is due to 

George H. Nickel (Ref 22). 

The reaction rate density for Compton scatter now can 

be written as 

ftR,.  = n<*v(£>,) a; c I 
f - e 

H rt* 

(26) 

(53) 

which has dimensions of reactions per volume per time per 

energy.  This formula assumes the electrons are at rest.  The 

cross section, however, is dependent on electron energy.  Note 

from Eq (52) that if E^^C^m c2  that the Klein-Nishina 

cross section reduces to the Thomson cross section.  This is 

well approximated in a thermonuclear plasma as typical photon 

temperatures can be expected to be on the order of 1 kev 

(Ref 9:475).  As the electron rest mass is m c2 = 511 kev , 

an approximation might be made assuming ö*VN"**^r for a 

thermonuclear plasma and using (PL  for the reaction rate 

density. 
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A power density may be written from the reaction rate 

by including the energy exchange per collision and integrating 

over the entire range of photon energies.  This average 

energy exchange per collision can be approximated by 

</*>- 
E? 

In.c* (54) 

This quantity is discussed in Appendix H. 

The power going from radiation to electrons per unit 

volume is 

(55) 

No integration is done over electron energy as the electrons 

are again assumed to be at rest.  Using explicit expressions, 

this becomes 

»4  tykTt 
<!£> (56) 

By multiplying and dividing by  (kT )  , and substituting 

y = E /k Tr  , 

(57) 
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The value of the integral is  4^- /15 , therefore 

P Ä 22L n> [J^cr^ r;* (kTr)s 

(58) 

This is the rate of energy flow from radiation to electrons 

for pure Compton scatter. 

The calculation for inverse Compton scatter is fairly- 

complicated and will not be included in this report.  Inverse 

Compton requires that the electron have non-zero kinetic 

energy prior to incidence with the photon.  The calculation 

first requires a transformation to the rest frame of the 

electron.  The energies of the incident and emerging photons 

are also transformed in the electron rest frame.  Rates are 

calculated in this reference frame and transformation back 

to the original frame is required.  The result is (Ref 20) 

e< • IM^-fe''^^ (59) 

This equation represents pure inverse Compton scatter. 

The net flow of energy from electrons to radiation can 

be found by subtracting the power from radiation to electrons 

due to Compton scatter from the power from electrons to radia- 

tion due to inverse Compton scatter, or 
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( 

pcET " pic - pc C60) 

Inserting Eqs (58) and (59) for PIC and  Pc 

.3 
p »£T- 11- Tr3 PA   COe r.1 (kTrV(kTe -kX)       . 

The coupling coefficient for Compton scatter may then be 

written 

61) 

This can be expressed in terms of the Stephan-Boltzmann 

constant and explicit expressions as 

Pertinent information on the Compton power density and 

Compton coupling coefficient may be found in Appendix I. 

Thermonuclear Three Temperature Model 

Complete ionization does occur in a thermonuclear 

plasma.  Nuclear interactions, however, are not modelled in 

Figure 4.  Neutral particles in the form of neutrons exist 
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in a thermonuclear state and are also not modelled in 

Figure 5.  Figure 11 includes these items. 

The neutrals are a result of the nuclear reaction 

D + T -* f/c4 (3.5 Mev) + n(H.i  Mev) (3) 

Note that one particle is returned to the ion distribution with 

an additional 3.5 Mev of energy.  One neutron at 14.1 Mev is 

added to the neutral distribution for each nuclear reaction, 

also.  The nuclear reactions, then, affect both the ion and 

neutral particle distributions, and are shown affecting both 

in Figure 11. 

Once born, however, the 14.1 Mev neutron may undergo 

elastic collisions with the ions, adding energy to the ion 

distribution.  This interaction is illustrated in Figure 11 

also.  The neutrons have no mechanism with which to interact 

with the photons and, though the neutrons can collide elast- 

ically with the electrons, the collision cross section is 

negligible when compared to the ion collision cross section. 

The energy distributions of the ions, electrons and photons 

remain the same as do the interactions between these species. 

The energy distribution of the neutrons is represented as a 

Maxwellian distribution in Figure 11. At extremely high 

densities, this should be the case as neutrons, being particles, 

will tend toward a Maxwellian distribution.  But at lesser 

densities, many 14.1 Mev neutrons will escape the plasma after 
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only few, if any, collisions.  Few will thermalize.  The 

escaping particles will not be in the distribution long, 

however, so the actual distribution may be a Maxwellian 

distribution with a peak at high temperatures. 

The nuclear interaction will dramatically add to the 

energy of the total system and is indeed the motivating 

process for this study.  Chapter II, then, addresses the 

system illustrated in Figure 11 and how these processes are 

modelled in the MOXNEX code. 
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III.  Theory and Coding 

Introduction 

This chapter discusses specific theory and how it is 

coded into program MOXNEX.  Remembering energy transfer 

theory developed in Chapter II, the specific equations of 

MOXNEX will first be presented.  A comparison of this set 

of equations with another formalism will then be given. 

Finally, the coding of the formalism into the specific 

equations of MOXNEX will be discussed. 

^10XNEX Formalism 

The MOXNEX one-dimensional, three temperature, spherical, 

Lagrangian code uses the momentum equation 

& - 7 7? <* * «> (64) 

where PT is the sum of the three species pressures or 

PT - Pe 
+ Pi + Pr <65) 

and q  is the artificial viscosity.  The coupled energy 

equations are 
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^>u-(*-^-,u"'ahtt('-^h 66) 

?< H + Air fa '**) -4.C (« ' W') (67) 

r-i^SS^^^fiS« 
JftTr)      | 

d 

The coupling coefficients in the equations are 

nAk   -    

p 
•jfc. 

where j  and  k denote specific species.  Each energy 

equation is derived using the chain rule 

j  denoting species, where 

(69) 

(70) 
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dTx (71) 

and for an ideal gas 

(72) 

The energy densities and specific heats for the three species 

are 

kp»MJiTy e       P*    e (73) 

and 

*  - 2 _Z 
(74) 

for electrons, 

t>wrr   t,        ri*\ = ?> Ti (75) 

and 

2*i (76) 

for  ions, 
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and 

r     -   4 X«» 
L.yr 

where 

Ion and electron species pressures are computed using an 

ideal gas equation of state.  Radiation pressure is 

*> • (¥) T 

where 

e1 3 A* (k T. V* 

The electron diffusion coefficient is 

55 

(77) 

Tr (78> 

(79) 

(80) 

The ion electron fields are coupled by 

A;« = £ve Hf (8i) 

(82) 



2 \* (kTjH £ Jr 

where 

eSr = o.«z 
(3.4+ 4 Z+ 0.26^lZ]) 

and 

(19) 

(83) 

AX'"^fef^)[Z^2-±')(^] (84) 

and is defined to have a minimum value of 1, 

radiation coupling coefficient,  A   , is 

The electron 

A*r r /»er + /*er (85) 

where 

h .«ki* 

(86) 

and 

L 
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with 

(i%C) 
(87) 

(88) 

where 

^jV^VTT)^ (89) 

The Rosseland mean free path is 

Ar = -    i. 3 Tc 
7/x 

r* 
(90) 

from which the radiation diffusion coefficient is attained, 

namely 

/6<T K- fb<r 1L    "T 
(91) 

Only the deuterium-tritium nuclear reaction is modelled 

assuming a fuel that is 50% deuterium and 50% tritium so the 

nuclear reaction rate density is modelled as 

•RR PT <r*X (92) 
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Two hydrogens are subtracted from the hydrogen number array 

for each reaction. 

Radiation-Electron Energy Transfer Formalism Comparison 

Reference 9 presents the bremsstrahlung Gaunt  factor 

as 

i 

«i • f ^* ] 
(93) 

where 

Ut)' JA^yx-v^7r)e",d< (94) 

Appendix F derives these quantities as 

6tt)* CiiiI@L!zi 
-(('//-<) 1 

0-X)( i-<£"') (88) 

where 

Ki)*fA(>Jx+JZT)e'*<l* (89) 

All quantities are dimensionless.  The bremsstrahlung Gaunt 

factor is used in the project as derived. 
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Reference 9 gives the bremsstrahlung coupling 

coefficient as 

A'  - 32/a \»<f*N,' ./g'Vj   ,M 

and the Compton coupling coefficient as 

3 (M.C»)'   U/ 

These are used according to the relation 

where 

Acr * C* (^ " A«') 

(95) 

(96) 

(97) 

(98) 

and j  denotes either electron  or radiation.  The quantity 

A „  , then, should have dimensions of 1/mt .  The dimensions er  '    ' 

of A   in Eq (98), however, are  l/(t-m-£). 

The coupling coefficients used in this study»may be 

exoressed 
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Al 3 wj Tirk\j?j(üfr'iQW 

and 

3 (w«ca)       VA/    l 

where 

Aer • /C + /Aer 

(86) 

(87) 

(85) 

i    i 

For computations in MOXNEX 

where 

£L _ + 

Acr - 

,er 

P 

(T. -Tr) 

Comparing Eqs (86) and (95), it is seen that they 

differ by a factor of pr Equations (87) and (96) 

differ by the same factor.  The dimensions of AjV. from ' ex 

Eq (100) should be 1/mt also.  The dimensions of A 

in Eq (85) are l/(t-£3) .  The quantity A^r  , then, is 

(99) 

(100) 
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1/mt , consistent with Eq (99) .  Derivations of these 

coupling coefficients are included in Appendices F and I. 

Subroutine GDATA 

This subroutine sets initial conditions by initializing 

variables and is called one time prior to the execution of 

physical processes.  Constants are gathered at the front of 

the subroutine, then specific zone values are computed.  The 

radii of the zones are the inside radius, that is r, = 0 . 

This requires one more radius element than the number of 

zones.  Thus, two loops are necessary; one having an upper 

limit of the number of zones and another to the number of 

zones + 1. 

Hydrogen density and pusher mass are constants of inter- 

est for parameter study.  Additionally, zone thickness and 

number of zones may be changed. 

Energy is introduced in the microsphere by initializing 

the ion, electron, and radiation temperatures as desired. 

If a cell has no other initial energy specified, it is set at 

a value of 1.16 °K or 1 x 10  kev.  Typically, the radiation 

temperature is set at 1 kev and the electron and ion temper- 

atures are set between 1.8 and 100 kev following procedures 

outlined in Reference 9. 
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Subroutine HYDRO 

Subroutine HYDRO is a one dimensional spherical 

Lagrangian hydrodynamics code.  It is based on the Lagrangian 

energy equation 

£-4I-M#] (101) 

where 

v 
P 

q 

i 

v 

t 

is species  temperature 

is the specific heat 

is species pressure 

is artificial viscosity 

is species   internal  energy 

is volume 

is time. 

Appendix J discusses this equation.    Viscosity is assumed to be due only 

to the ions, and is modelled by artificial viscosity.    Thus, q is seen 

only in the ion species equation. 

The  first  lines of the  subroutine   initializes    constants 

and     steps     the     cycle     counter. Initial  densities  are 

then calculated and viscosities  are set  to zero for  the 

first cycle.     Ion and electron pressures  are  computed using 

a perfect gas  law and  species  populations  computed  in  other 

subroutines.     Radiation pressure  is  calculated  from 
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(80) 

An effective temperature is calculated for the case 

of electron degeneracy and is used as a minimum electron 

temperature according to the relation 

^(tneci,*)   - O.COSLSf2* (102) 

This is discussed in Appendix K.  At low values of T  , 

this effective minimum provides electron pressures which 

create a disassembly rate higher than classically antici- 

pated (kef 9:477).  Total pressure is the sum of the species 

pressures, or 

Pr = ft + ?e (65) 

The time step is computed using a fractional value of 

the time required for a shock wave to travel across the 

thinnest cell or 

where 

JLt itzrA.t.ior\ -   F 
*rr»„ 

(103) 

F  is the fractional value specified 

c  is the speed of sound in the medium. 
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The speed of sound is computed using 

•<&) 

This assumes a perfect gas so that §    = 5/3  and also that 

viscous pressure is due only to the ions.  A minimum time 

step is specified in subroutine GDATA and a maximum time 

step is specified early in the HYDRO subprogram.  The 

fractional value used may be varied between 1/10 and 1/2. 

Cell wall accelerations and velocities are computed 

using total pressure and artificial viscosities.  New cell 

wall positions are then determined. 

With these new positions, densities are updated. 

Artificial viscosities are now updated according to the 

relation 

^ *p(Ar?(vv)% 

(104) 

(105) 

where 

q  is the artificial viscosity 

V*V" is the divergence of velocity (Ref 27:136). 

In the instance of cell expansion, artificial viscosity is 

set to zero. 

Species temperatures are then updated accounting for 

compression or expansion.  Computations assume the total 
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Pdv work  can  be  divided  between  the  ion,  electron 

and radiation energies based on the species pressures. 

Ion and electron calculations are done using the ideal gas 

law.  Viscosity is not used in the electron temperature 

update equation, again reflecting the assumption that 

viscous pressure is due only to ions.  Radiation tempera- 

ture is updated using 

»A 

(106) 

where 

V*   -'is the updated volume 

£V is the change in volume 

n is the iteration. 

This assumes adiabatic compression and is discussed in 

Appendix M.  Minimum species energies are specified. 

Finally, the total time is re-calculated. 

Subroutine TBURN 

Subroutine TBURN provides the reaction rates of the 

deuterium-tritium fusion reaction.  Deuterium-deuterium 

reactions are not computed.  Tritium created by deuterium- 

deuterium reactions is not considered.  Constant tempera- 

tures and number densities of deuterium and tritium are 

assumed at the time of the subroutine call. 
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A minimum ignition temperature flag, TSTART, is set 

at 1 kev, a figure based on bremsstrahlung power lost.  If 

the ion temperature is below the TSTART temperature, no 

reactions are computed in any cell.  The flag TBURN is used 

to carry this information to other subroutines; TBURN = 1 

signals ignition and TBURN = 0 denotes no thermonuclear 

burn.  The number of deuterium and tritium ions burned are 

subtracted from the totals in each cell. 

The reaction of  interest in TBURN is 

D + T^   He4  + r> (i) 

The reaction rate density for this reaction is 

KR1T = n,rNT<<rv>,T (107) 

where <av>nT  is the Maxwell Boltzmann velocity distribution 

weighted average of cross section for the deuterium-tritium 

reaction times the velocity of approach of the reactants 

(Ref 4:358).  The weighted average of the product  <av>nT 

is modelled in two ranges, one for ion temperatures less 

than or equal to 10 kev, namely 

<<*"»>„ 
Ti £|0 k, 

s (3.8>c/o-,77i se 
(108) 
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and for ion temperatures greater than 10 kev 

<HuU.« (•**n**fu"*,+'m*kim •>\OkäAr 

DT from these functions are seen in Values ofvjfVy 

Figure 11. 

Since the original hydrogen mix is specified as 50% 

deuterium and 50% tritium, only the hydrogen number density 

is used modelling the reaction rate density as 

HIV =   J&L <<ru> PT 
(92) 

Subroutine WHEAT 

Subroutine NUHEAT calculates total neutron heating in 

each cell.  The uncharged neutrons do not participate in 

Coulomb collisions as do alpha particles though neutrons 

can add significantly to plasma heating at high fuel 

densities (Ref 4:330).  Most neutrons born at 14.1 Mev, 

however, escape unscattered for conditions of interest 

(Ref 4:359).  Expense is minimized by using a beam attenu- 

ation model.  This simplification is an economical consider- 

ation balanced by the relative importance of neutron heating 
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Deuterium-tritium reactions are counted during one 

cycle and, by assuming isotropic production of one neutron per 

reaction, the new neutrons are placed at the center of the 

microsphere and attenuated during their path length through 

the plasma.  Using an energy of 14.1 Mev for the neutrons 

and a cross section of 0.8 barns for collisions with deuter- 

ium, tritium and helium nuclei, the number of interactions 

per cell is ascertained according to 

NuMfie*   OF   Tnre*.HCTit»js. «• (TOTAL   /V/<FWT*ON    hiu**hfk ) & 

(l - TWABK-W A   A/fuTiu>N   ?e«ern*Tes   rut Cen) (HO) 

The  probability  the  neutron penetrates   the  cell   is 

fen f 7M7f        6 
-MuMBCfc OF lens * Ol ik "RAPI/M.   "D|xrA*efi THROUGH Cfi*) 
r 'an: 

and the ion number denisty is 

*X~,   * (nH* n«*)/^ 
(112) 

The cross sections from BNL 325 for deuterium, tritium 

and helium at 14.1 Mev are shown in Table 3.  Noting the 

values in Table 3, 0.8 barns seems low for this treatment. 

The average energy per collision is multiplied by the 

number of interactions to attain total heating.  The 

average energy per collision is given by 
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Table 3 

Cross Sections for 14.1 Mev 

Neutron Interactions with Selected Nuclei 

Nucleus Cross Section (barns) 

Deuterium 0.93 

Tritium 1.15 

Kelium-4 1.21 

Average Energy 
1^(2.35) + ^(1.7625) + n^U.4) 

n„ + H + nHe 

(113) 

The factors of •*- in front of the hydrogen number densities 

signify a 501 mix of deuterium with a 501 mix of tritium. 

Finally, subprogram NUHEAT calculates the number of 

3.5 Mev alpha particles that will give an equivalent amount 

of heating if all 3.5 Mev is deposited in the plasma.  This 

number density of alpha particles is passed in the NUHEAT 

argument list to other subroutines. 

Subroutine ALPHA1 

The subroutine is designed to compute the energy 

deposited in each cell by monoenergetic 3.5 Mev alpha 

particles born in deuterium-tritium reactions.  Also, it 
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computes the number of alpha particles produced in each 

zone, recomputes helium particle number density, recalculates 

total zone mass and adjusts ion and electron temperatures. 

Subprogram ALPHA1 calls 14 other subroutines to accom- 

plish tasks.  Subprogram organization is illustrated in 

Figure 13. 

M<gfcirql 

"— ALPHAl 

-a*=% 

XYT^B] 

-HE5E5ID" 
Hxynr«y| 

INDDS 

ELOSSJ 

Figure   13.     Subprogram ALPHAl  Substructure 
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The main subroutine, ALPHA1, is the location where 

temperatures, zone mass, alpha number densities, and heating 

are computed.  Subroutines XYT3 through XYT9 and GETA through 

GETB are geometry subroutines.  Subroutine FINDDS calculates 

an integration increment and ELOSS computes energy deposition 

and energy partition.  A logical flag, IALPH, is set according 

to remaining alpha particle energy and signals particle 

behavior.  Table 4 defines parameter IALPK.  Before each call 

IALPH is set to 0.  This value is changed by the geometry 

subroutines.  The logical flag value ISTOP = 0 signals thermal- 

ization. 

Table 4 

Logical Flag IALPH Definitions 

IALPH Valut Behavioral Treatment of Aloha Particle 

Particle travels line of sight until 

thermalization; electron collisions 

dominate 

Particle travels line of sight until 

ion collisions dominate; scatter 

becomes significant and particle stops 

Particle stops in birth zone 
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Figure 14.  Angular Directions for Alpha Particle 

Leaving the j   Zone 

The geometry used by the coding is summarized in 

Figure 14.  Alpha particles are assumed to be at zone 

center at birth.  Angles are most finely divided at IT/2 . 

The paths are weighted by the amount of angle considered 

assuming isotropic propagation from particle birth location. 

The purpose of the geometry subroutines is to find the 

distance traveled within a zone, thus enabling energy 

deposition modelling.  The particle direction is assumed to 

be unchanged by collisions with electrons.  Appendix M 

describes the geometry models. 
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The energy is deposited by subroutine ELOSS.  It used 

the range energy described by Fraley et^ al_. (Ref 9:475), 

namely 

(114) 

where 

s     is distance in centimeters 

p       =    0.213 grains per  cubic centimeter for solid DT 

and 

U-- Jk. 
3.5"M»v (115) 

E  being the residual energy of the alpha particle in Mev. 

The first term represents energy deposited in electrons and 

the second term  represents energy deposited by ions.  The 

fraction of energy partitioned to the ions, F^, during alpha 

particle transit is described by 

(116) 
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The energy deposition rate is much higher near the end 

of the alpha particle path due to ionic collisions (Ref 9:475) 

Subroutine ELOSS models this by comparing the electron and 

ion terms and stopping the particle in the current zone when 

the ion term dominates. 

The range of the alpha particle when only the electron 

term »$f Eq (114) is considered is 

rM~T*$o.o«[,<o.<7^(£f]} 
-I 

(117) 

The range when only the ion term is considered is 

;W »(£)'<>•"('+ö-07^[T.*(£ (118) 

These relationships are used in subroutine FINDDS dividing 

A« by 50 to attain an integration increment.  When the 

electron temperature is below 20 kev,  X   is used denoting 

electron collision domination.  Above 20 kev, X    is used 

to model ion collision domination. 

This integration increment is always computed prior to 

energy deposition.  The actual integration is accomplished 

in ELOSS using a 4th order Runge-Kutta method. 
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Subroutine HTFLX 

Subroutine HTFLX calculates the energy transfer between 

radiation, electron and ion components.  Flux continuity 

at cell boundaries is used in electron and radiation diffusion 

calculations. 

Constants used include pi, electron mass and charge, the 

speed of light, Boltzmann's constant, the fine structure 

constant, and the Stephan-Boltzmann constant.  Constants for 

coefficients of thermal conductivity, equilibration frequency, 

Compton coupling and bremsstrahlung coupling coefficients 

are grouped in front.  Constant terms from the Coulomb log- 

arithm are found in initial subroutine stages.  Heat and 

radiation fluxes are initialized to zero. 

Electron-ion energy exchange is the first process 

addressed.  The Coulomb logarithm for electron-ion energy 

exchange is 

x-**-AMÄ.fcyra?r.J '*" 
The minimum value of the Coulomb logarithm is set at 1. 

The term A/(ZN p)  is coded as volume per number of 

electrons. 
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Using this, the thermal conductivity is given by (Ref 26:144) 

(19) 

•" 

The factor E  is due to the secondary electric fields origin- 

ated by the flow of charged particles.  The factor  6T  is 

dependent on the  Z of the material and is included to model 

a real gas vice the Lorentz gas on which the derivation of 

Eq (19) is based (Re! 26:144).  The product  e6T  is modelled 

€.cPT  - 
Ö.43Z 

(3.44 + 2 * Ö.Z6XDÖ) 
(83) 

The equilibration frequency, /£<.« » is 

W (82) 

The quantity 

(*)'* 
r= 

(119) 

where N   is the number of electrons in zone  j 
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It is so coded.  The Z's used are net charge  N /N. .  Array 

values for all but the last zone are averaged over two zones, 

Array values for the last zone are used without average. 
3 Ti m 

A term of  (1 - y «— —)  is included in Reference 9 
i   ie mi 

for v    .  It is not used in this study, as it will be eq ' ' 
insignificant if T.  and T  are within an order of ° l       e 
magnitude.  These terms are discussed in Chapter II and 

Appendix N. 

The derivative for flux calculations is 

ie Te  -I* 

'j+a - C 
(120) 

except for the  final two zones where 

Te  - k 
•———————^—*i^-i••• 

(121) 

The heat flux is then 

FLUX= r2K,^ (122) 

The updated electron temperature comes from a combination 

of ion electron energy transfer and electron heat conduction. 

This is 
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At        Zkhlt * dr /    • v (123) 

This equation is discussed in Appendix N.  The ion temper- 

ature is then 

$»-**, (7*-TO (124) 

where again Z  is net charge. 

The electrons are much lighter than the ions and so 

conduct much more energy through diffusion than do ions. 

Consequently, ion heat conduction is not considered. 

Radiation-electron energy transfer is treated using 

a Rosseland mean free path 

v% 
(90) 

from Fraley et al. (Ref 9:476).  A radiation diffusion 

coefficient 

fC = 3 (91) 

is then evaluated.  Radiation flux is then calculated by 

dr (125) 
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where the spatial derivative of the radiation temperature 

is treated similarly to  the  spatial derivative of the 

electron temperature. 

A bremsstrahlung Gaunt factor is computed using 

SOO-?-(?-«) e (126) 

(86) 

where )f  = T /T   .  The Gaunt factor for bremsstrahlung 

processes is discussed in Appendix G.  This Gaunt factor 

is used in computing the bremsstrahlung coupling coefficient 

which is 

*«       3  WmJ   -Rc^*VÄm/(wy» 
The Compton coupling coefficient is denoted 

These are added to arrive at the complete coupling coeffi- 

cient or 

ner " At?  + MCf (85) 

These coupling coefficients are discussed in Chapter II 

and also in Appendices F and I. 
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Specific heats are required and are 

nit 
Ve    "     * — (127) 

and 

C»f = l€<TTr •vr  

The radiation temperature can then be updated using 

d*      c,f 
v        ;    ^<W\iv    ^   d* ) 

This equation is discussed in Appendix O  .  The electron 

temperature is updated using 

iü=. isi(T.-Ti) 

Because of the mass difference between ions and 

electrons, radiation interaction with electrons is highly 

preferential. Radiation-ion energy exchange is, therefore, 

not considered. 

Subroutine OUTPUT 

This subroutine can be called at timely locations to 

provide a variety of information.  A summary of the data 

printed on hard copy is given in Tables 5 and 6. 

(128) 

(129) 

(130) 
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Table 5 

Cyclic Data Printed by Subroutine OUTPUT 

Parameter Dimension 

Cycle Number Pure Integer Number 

Total Time Nanoseconds 

Time Step Picoseconds 

Input Energy Kilojoules 

Output Energy Kilojoules 

Table 6 

Zone Data for the Given Cycle Number 

Printed by Subroutine OUTPUT 

Parameter Dimension 

Zone Number Pure Integer Number 

Radius Millimeters 

Cell Wall Velocity Millimeters per 
nanosecond 

Reactions Reactions per time step 

Density Density times normal 

Electron Temperature kev 
Ion Temperature kev 

Radiation Temperature kev 
Output Joules 

Heating Joules 

Neutron Fluence 
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The cyclic information is printed at the top of the page 

followed by zone information in columns.  Neutron fluence 

is a parameter of interest currently not computed in 

program MOXNEX.  Conversions are made in subroutine OUTPUT 

to attain the desired parameter dimensions. 
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IV. Validation Arguments 

Introduction 

Code validation for the MOXNEX program is a goal that 

must be satisfied to enable its use as a vehicle for further 

study.  Because the code is not yet running, comparison 

with published data is not possible.  Steps were taken, 

however, to analyze specific analytic cases and to validate 

program modules.  The efforts to verify the MOXNEX coding and, 

in particular, the HYDRO and HTFLX subroutines are discussed 

in the following paragraphs. 

Analytic Cases 

The radiation-electron energy transfer coefficient 

Aer usec* in subroutine HTFLX is discussed in Chapter III. 

Chapter III also includes a comparison between the radiation- 

electron energy transfer coefficients used for this study 

and those coefficients used in Reference 9.  Chapter III 

further points out that the coefficient used by Reference 9 

is dimensionally incorrect.  It also notes the MOXNEX 

bremsstrahlung and Compton coupling coefficients differ 

from those used in Reference 9 by a factor of p r  ,  This 

means the radiation-electron energy transfer coefficients 

used in the two studies differ by a factor of r« - 

2.8178 x 10"13 centimeters (Ref 3:501), or a difference of 

84 



almost 13 orders of magnitude.  A difference of this size 

in the radiation-electron energy transfer coefficient should 

make a substantial difference in the results attained from 

the two codes and is further discussed in Chapter V. 

Critical examination of the processes that are included in 

the radiation-electron energy transfer coefficient, then, 

is central to this study in order to confirm the value of 

this coefficient.  Appendices include derivations of the 

radiation-electron energy transfer coefficient components, 

the bremsstrahlung coupling coefficient and the Compton 

coupling coefficient.  The locations in appendices of 

derivations of the bremsstrahlung and Compton coupling 

coefficients, along with other derivations and analytic 

verifications used directly in MOXNEX coding, are summarized 

in Table 7. 

In many cases supporting calculations for derivations 

are presented in prior appendices.  Cross section derivations 

for short and long range Coulomb collisions are derived in 

Appendix C.  Appendix E discusses cross sections for 

bremsstrahlung and inverse bremsstrahlung collisions which 

support bremsstrahlung coupling coefficient calculations. 

Bremsstrahlung Gaunt factor modelling is addressed in 

Appendix G.  The enhancement factor for bosons used in both 

bremsstrahlung and Compton calculations is derived in 

Appendix L.  The average energy exchange during a Compton 

collision is discussed in Appendix H.  The geometrical models 
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Table 7 

Analytic Verifications of Specific Terms and Equations 

Used for MOXNFX Coding 

Appendix  Derivation Subroutine  Page 
Where Used 

Bremsstrahlung Process 
Coupling Coefficient 

HTFLX 

F Bremsstrahlung Gaunt Factor HTFLX 

I Compton Process Coupling 
Coefficient 

HTFLX 

J Lagrangian Energy Equation HYDRO 

K Equivalent Fermi Electron 
Temperature 

HYDRO 

L Radiation Temperature Adiabatic 
Update Equation 

HYDRO 

N HTFLX Electron Temperature 
Update Equation 

HTFLX 

0 HTFLX Radiation Temperature 
Update Equation 

HTFLX 

used for subroutine ALPHA1 are presented in Appendix M. 

These derivations and mathematical discussions are presented 

to support presentations in Chapters II and III, but also 

to provide an analytical check on the self consistency of 

the coupled rate equations. 

An error was discovered in the original HTFLX differencing 

scheme for temperature update equations that required cor- 

rection.  Temperature update equations in subroutine HTFLX 
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use the first derivative, äT/dT-^^where dT denotes 

either the electron or radiation species temperartur~e.._ This 

temperature gradient is approximated by the quotient of 

finite differences between cells.  The temperatures used 

for this finite difference must be the temperatures at 

the time of the subroutine call.  The temperature differ- 

ences in the original equations used already updated temper- 

atures in the outer 3 cells yielding an erroneous gradient. 

A new differencing scheme is now employed to ensure that 

the gradient is computed in all cells using the temperature 

values at the time of the subroutine call. 

Other discrepancies were found in the signs of the 

temperature update equations in subroutine HTFLX.  These 

sign errors were changed ensuring that energy flows in 

the correct direction. 

Quasistatic Equilibrium Study for Subroutine HYDRO 

Subroutine HYDRO updates species temperatures based 

only on adiabatic changes.  No energy transfer mechanisms 

are modelled in the subroutine.  Consequently, species 

temperatures should be updated only by cell expansion or 

contraction independent of differences in temperatures 

between species.  If the species temperatures are nonzero 

and approximately the same between cells within the species 

inside the microsphere, cell expansion should be most 

rapid in the outer cells since the species pressures outside 
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of the last cell are very close to zero (all species 

temperatures outside of the last cell are initialized to 

1. x 10  kev).  After a time period short compared to the 

time required for microsphere kinetic disassembly and in 

the absence of other processes, the inner cells should 

demonstrate no temperature changes or energy exchanges 

and the outer shells should have decreased temperatures 

due to expansion. 

These phenomena were tested and observed by calling 

subroutine HYDRO consecutively 100 times after initializing 

species temperatures at equilibrium conditions and then at 

various non-equilibrium conditions.  Using 40 cells, no 

temperature changes were observed in the inner 34 cells in 

any calculation and temperatures lower than initial temper- 

atures were seen in at least the outer 3 cells in all 

species in all calculations.  Table 8 lists the initial 

temperatures and final temperatures in cell 40 and the 

total time for the run for the 4 runs completed.  The reason 

that total time on the second run is different from the 

other three is that a different time step was used. 
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Table  8 

Quasiequilibrium  Studies   for   Subroutine   HYDRO 

(100   Iterations,  All  Temperatures   in kev) 

Electron Temp Ion Temp Radiation Temp 

Run Initial       Final Initial       Final Initial       Final 
No. (All Cells) (Cell 40) (All Cells) (Cell 40) (All Cells) (Cell 40) TOTAL TIME 

1 6             2.770 6 2.770 6 4.954 0.0808 nsec 

2 6             2.647 3 1.323 6 4.898 0.1       nsec 

3 6             2.796 6 2.796 3 2.483 0.0808 nsec 

4 3             1.505 6 3.010 6 5.056 0.0808 nsec 

Point   Explosion Calculation  for  Subroutine  HYDRO 

An analytic  solution,  due to  Sedov   (Ref  25)   is  available 

for pressure  at  a  shock wave front  resulting  from an explosion 

at  a dimensionless  point   (Ref  25:238-240).     This   solution for 

spherical geometry is 

o   iv» 2/- (jr-Of 
5=^ f— 

where 

5 -1 (f)W (132) 

where 
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rs 

(*'/?.)" (133) 

and 

cL-    BYBC (134) 

In these  equations 

P      is  ambient pressure o r 

P  is pressure at the shock front s    r 

0      is the ratio of specific heats 

r  is the distance of the shock front from the s 

ihere center 

E  is the energy of the explosion charge 

o      c 

The constant o<> is a function of /  and is approximately 

0.84 for ^ = 1.4 and 0.48 for / = 1.67 (Ref 25:231-240). 

A hydrodynamics scheme may be validated by initiating 

an explosion obtaining values for pressure at the shock 

front and shock front distance from the sphere center, and 

comparing these values with values obtained from the analytic 

solution. A dimensionless point can only be approximated 

in a hydrodynamics scheme by placing the charge energy in 
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the smallest possible volume. This should lead to error 

in the form of small random deviations from the analytic 

solution. 

The calculations were done using g    = 1.67  and compared 

to the Sedov solution curve (Ref 27:142) for tf   = 1.4 .  The 

slope and shpae of this curve was duplicated in each calcu- 

lation.  The differences in the ratios of specific heats, 

5 , ana the scaling of  E  with f     is felt to be the 

reason that actual coincidence was not attained.  A solution 

for fl = 1.67 can be constructed using Eqs (131) through 

(134).  It is felt that coincidence with such a solution 

would be attained with a point explosion calculation in 

subroutine HYDRO.  These calculations were not pursued, 

however, in view of limited time and resources. 
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V.  Recommendat ions 

Code Completion 

Without code completion, the work presented is largely 

inconclusive.  Code completion and subsequent comparison 

with published data is central to any further code develop- 

ment or modification. 

Time Step Selection 

Currently, the time step used for the entire MOXNEX 

program is determined in subroutine HYDRO.  As noted in 

Chapter III, this time step is defined by a fraction (less 

than or equal to 1/2) of the time required for a shock wave 

to travel across the thinnest microsphere zone.  Using this 

time step, erratic values of the temperature gradient are 

observed in subroutine HTFLX resulting in temperature changes 

of as much as three orders of magnitude in electron tempera- 

ture during one iteration.  These dramatic variations in 

the temperature gradient, as well as the resulting electron 

temperatures, are uncharacteristic of inertially confined 

fusion microspheres (Refs 4, 6). 

Consideration may be given to redefining the time step 

selection method to obtain time step values yielding gradient 

values compatible with HTFLX equations.  One method that 

could be employed would be modifying the program to allow 

the electron temperature and/or the radiation temperature 
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update modules to define the time step for the entire program. 

The first derivative, dT/dr  , could be iterated until a 

favorable value of dt  is attained.  A favorable value of 

dt would be the largest value of dt  that yielded well 

behaved temperature changes between cells.  This value of 

dt  could then be used as the time step for the entire program. 

This process, however, may yield a very small time step.  This 

time step may result in stable difference equations in sub- 

routine HTFLX, but also insignificant changes in other sub- 

routines.  For instance, cell walls in subroutine HYDRO may 

move so little that their movement is barely consequential 

so that an increased number of iterations is required for 

the overall run.  A very small time step, then, may greatly 

increase the total number of computer operations required per 

run and inefficiently treat the overall problem. 

Efficiency might be regained by letting the HTFLX and 

HYDRO subroutines proceed at separate time steps character- 

istic of the processes modelled.  If the characteristic time 

step for the HTFLX subroutine is significantly smaller than 

the time step computed in the HYDRO subroutine, HTFLX could 

be sub-cycled independently from the rest of the program. 

When total time over many HTFLX iterations is equal to the 

HYDRO time step, the HTFLX subroutine can be interfaced into 

the rest of the program.  This approach may provide stable 

equations throughout the MOXNEX code and still achieve a 

minimum of computer operations. 
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Literature Comparison 

Once the code is completed, validation by comparison 

with published literature should follow.  Brueckner and 

Jorna give graphical data of ion temperature versus micro- 

sphere radius at different times for 40 micrometer deuterium- 

tritium microsphere with a uniform initial density of 600 

grams per cubic centimeter and initial uniform electron and 

ion temperatures of S kev in the center six micrometers 

(Ref 4:361) to which MOXNEX results may be compared.  This 

data is seen in Figure 15.  The MOXNEX model incorporates 

many features of the Brueckner-Jorna code.  The thermo- 

nuclear reaction rate modelling for MOXNEX is taken directly 

from the Brueckner-Jorna coding description (Ref 4:358). 

Some differences, however, exist in the equations used 

for charged particle and neutron heating, radiative transfer 

and the equation of state.  A tabular Fermi-Thomas equation 

of state is used for the electron species (Ref 4:357) which 

should model electron energy much more closely than does the 

MOXNEX coding which accounts for electron degeneracy only at 

low temperatures and uses a perfect gas law as the equation 

of state.  Still, similarities in the processes modelled 

lead to  anticipation the MOXNEX code will duplicate the 

curves seen on page 361 of Reference 4 by much less than an 

order of magnitude for the same input parameters. 
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Figure 15. The propagation of the burning front in 

initially uniformly compressed DT.  The initial 

density is 600 gm/cm3 and the initial radius 

40 urn.  The central region initially heated to 

5 kev has a 6 ym radius.  The curves are labeled 

by the time in units of 10"10 sec (Ref 4:361). 
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The radiation temperature used by Brueckner and Jorna 

are not given for the above example.  The radiation tempera- 

ture in the MOXNEX program might be initialized at 1 kev 

following the lead of Reference 9, with the hope of dupli- 

cating the Brueckner-Jorna data. 

A second basis paper, written by Gary S. Fraley and 

others, gives extensive data for numerous microsphere sizes, 

densities, and temperatures on pages 479 through 483 of 

Reference 9.  The MOXNEX coding of alpha particle heating 

is patterned after equations appearing in this paper.  The 

coding of the energy transfer processes in MOXNEX for species 

temperature update in the three temperature model closely 

parallel the equations of Appendix B of Reference 9.  A 

tabular Fermi-Thomas-Dirac equation of state is used in the 

Fraley code (Ref 9:474), so once again differences may be 

anticipated when MOXNEX results are compared with Fraley code 

results due to differences in the equation of state. 

A large difference exists, however, between the MOXNEX 

code and the Fraley code in the values of the radiation- 

electron energy transfer coefficient.  This difference, 

discussed in Chapters III and IV, may result in a much 

different energy partitioning among species between the 

two codes. This energy partitioning difference will affect 

many other areas which are temperature dependent such as 

thermonuclear reaction rates and species pressures.  The 

disagreement should propagate and magnify as the codes 
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progress in time.  The degree of similarity between the MOXNEX 

code and the Fraley code hinges on the relative importance 

of the radiation-electron energy transfer process.  This 

process may be dominated numerically by thermonuclear, Cou- 

lombic, or other processes in both codes in which case the 

MOXNEX results should closely approximate the Fraley results 

because of the similarities in the processes modelled and 

similarities in the equations.  Much better than order of 

magnitude agreement may be seen. 

If, on the other hand, other processes do not numerically 

dominate the radiation-electron energy transfer process, 

correlation between the MOXNEX code and the Fraley code 

should be hard to recognize.  Radiation-electron energy 

transfer should be a significant process (Refs 4, 10, 18, 26). 

Doubt exists whether this process is so totally dominated that 

a coefficient difference of almost 13 orders of magnitude 

will be inconsequential. 

Nevertheless, Reference 9 reports agreement with other 

published literature (Clarke, J.S., H.N. Fisher, and R.J. 

Mason.  "Laser-Driven Implosion of Spherical DT Targets to 

Thermonuclear Burn Conditions," Physical Review Letters, 30 

(2): 89-92, (January 1973).) in total microsphere energy 

yield.  The three temperature code used in this paper is the 

basis for the three temperature model used for the Fraley 

code (Ref 9:474).  Both Reference 9 and the paper by Clarke 

and others were written at the Los Alamos Scientific Laboratory 
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between 1972 and mid-1973.  In fact, one author, R.J. Mason, 

is a common author for both papers.  The possibility exists 

that the agreement in results is at least in part a conse- 

quence of the similarity in their coding.  Further, the 

possibility exists that the radiation-electron energy trans- 

fer coefficient used in both codes is the same. 

With this background in mind, the Brueckner-Jorna code 

results should be considered as the primary comparison 

standard.  Differences in results between the MOXNEX code 

and the Fraley code might be explained b/ the difference in 

the radiation-electron energy transfer coefficient.  Results 

from both codes are computed using one dimensional, spherical 

Lagrangian coding. 

Another inertial confinement fusion code to which MOXNEX 

results could be compared are the LASNEX code results from 

the Lawrence Livermore National Laboratory.  LASNEX models 

sophisticated physics in a large and expensive computer 

simulation to support experimental laser fusion studies at 

Lawrence Livermore National Laboratory.  Some LASNEX code 

results might be attained from recent volumes of the Lawrence 

Livermore National Laboratory laser program annual reports. 

Additionally, these annual reports contain information con- 

cerning experimental laser fusion.  A strong validation 

argument is made if MOXNEX results agree with LASNEX results 

or experimental results for total yield, disassembly times, 
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neutron fluence, and species temperature profiles in time 

within an order of magnitude. 

Driver Incorporation 

A final recommendation is to incorporate an energy 

delivery mechanism or driver into the MOXNEX code.  Driver 

incorporation will add completeness to the MOXNEX code and 

make it more comparable to other studies of its type, for 

instance, the Brueckner-Jorna code.  Study may be augmented 

in many additional areas such as laser-plasma coupling, 

particle beam-plasma coupling, and microsphere design by 

using and/or further developing the MOXNEX code.  Procedures 

outlining driver incorporation to a fusion microsphere are 

included in the paper by Brueckner and Jorna (Ref 4). 

Additional modelling information can be found in recent 

laser program annual reports by the Lawrence Liverroore 

National Laboratory. 
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. 0=        CMEH5    R (10! >. AMASS < 1 Ol > .VEL'. 1   > .'  j 
BIO  HU0l>,HS L01> .PUSH<101> .ELECUOi) ,TEU01) , 

130=     * TI (101> , rR .. -• ) »F.EACU'J  . • • '    r'  •" " 1 ' 
1 4 0=      D IMENSI ON RELRHO < i 01) . THEAT (1 01 ) . DLL V ( 1 

'    101 
i. 50«G ******** * * * * % ****** * « * t * * * * * * S * * * * * * * * 
160=*C   HYDRODYNAMICS VARIABLES  
170=C     R(I) 15 RADIUS OF ITH ZONE ! N CM 
1S0=C      ' = 5 ' T i IE TOTAL MASS OF I ~V   ZONE IN GRAMS 
190=C     P(I) IS TOTAL F     JRE EN ITH ZONE IN ERG CM3 
200«C     0(1) T5 ARTIFICIAL VISCOSITY [N ITH ZONE IN ER6/CM3 
210=C     '.-1 ( 1 ) IS VELOCITY OF ITH ZONE IN CM/SEC 
220-C VCI) IB VOLUME QF   ITH ZONE IN CM3 
230=C* * * * * * * * * * * * * * * « * * * * * * * * * * * * * * * * * * * * * * 
240=C   INDIVIDUAL PARTICLE VARIABLES  
250=C     H(.i:>    IB TOTAL NUMBER OF D+T ATOMS IS ITH ZONE (50-50 MIX) 
260»C     HE(D 13 TOTAL NUMBER OF ALPHAS IN ITH ZONE 
270=C     PUSH(I) 15 TOTAL NUMBER OF PUSHER "ATOMS" IN ITH ZONE 
280*C     ELEC(I) 15 TOTAL NUMEER CF   ELECTRONS IN ITH ZONE (NEUTRAL! 
290~C     TECI) 15 ELECTRON TEMP I!  JT4 ZONE IN KEV 
300=C     TDD 15 ION TEMF IN ITH ZONE IN KEV 
310=C     TR(I) 15 RADIATION TEMP IN ITH ZONE IN KEV 
320=C     REAC(I) 15 TOTAL NUMBER CF REACTION? IN ITH ZONE THIS DT 

330= C* ** * * * * * *• * * * * * * * * * * * * * # * * * * * * * * * * * * *# * 
340=C   SIN5LE VARIABLES  
350=0     DT IS TIME 5TEP IN SECONDS 
350---C     NEF'ACE 15 MUMPER OF ZONES IN ENTIRE PROBLEM 
370=C     NFUEL 15 NUMBER OF LAST FUEL ZONE 
380-C     ZPUSH IS AVERAGE ATOMIC N IMBEr C F PUSHED "ATI ; 

3 9 0 = C * * * * * * * * * * * * * * * * * * * # * * * * ************** 
400*=C 
410=C 
420= 

,CYCLE« 
430= 

USHD, 
440« 
450= 
460« 
470- 
460= 
4 90= 
500= 

Z.PMASS 
51 0= 

DRVENG) 
520-C 

EBER) 
530= 

RELRHO, 
540= 

DSHD, 
75'"»= 

SET INITIAL CONDITIONS 
CALL GDATA       (R.DT,TE,TI, TR.NERACE,NFUEL.TIME.H,HE.FUSH 

1   ZPUSH,PMASS.DMASS, TMASS, AMASS, ELEC,V»HEWASS,DELV,PR,HB,P 

*   HMASS.DRVENS.TREAC.THEAT,VEL, ALPHA) 
DRENG - 0.0 
DO 10 I=1,N3PACE 
REACH) « 0.0 
RELRHO(I) = 1. 

10 FLU(I) = 0.0 
CALL      OUTPUT(R.CYCLE. TIME. DT , DRENG.NFUEL.NSPACE,VEL,RHO 

•/.. ZPUSH, ELEC, TE, TI,TR, REAC . TREAC, THEAT, FLU. F EL RHO , H, HE, PUSH. 

UPDATE H>DRO VARIABLES. PARTICLE VARIABLES BY HYDRO (WAOE/W 

CALL. HYDRO      (R, VEL. DT . TR, TI. TE, NSPACE,TIME,CYCLE. T BUF N. 

1 H.HE.ELEC.PUSH,AWBS,PMAS9 . DMASS,TMASS,HEMASS, FR.DELV,HD,P 

2 NFUEL,V) 

1C4 
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2 , ( M BS 
70- 

580=C 
590* 
600= 

: . PMASS 
6 iü~ 

DRVENG) 
620=C 
630= 
610= 

: PMASS 
650= 

Z cVENG) 
660=C 
670=* 
680= 
690=» 
700= 

Z.PMASS 
710= 

DRVEN6) 
720=C 
730= 

MASS, 
740= 

- :: * c " 

CALl     I -UT
;
R.CVCLE.I]    . •      ü  • . • :• .    '   .   • - 

:, ZPUSH,ELEC,TE.TI.TF r''r   TREAC THFAT '      ~  - "•. ; -:: PUSH. 

COMPUTE THERMONUCLEAF REACTION RATES, REMOVE DT MASS 
CALL       TNBURN (NSPACE. NFUEL, DT.. v . H, TI. REAL . TREAC. I BUF N) 
CALL      OUTPUT (R,CYCLE, TIME, DT, DRENG,NFUEL.NSPACE, VEL.RHO 

.. ZPUSH,ELEC,Ti TR, REAC . 1 REi iC, HE Al , FLU, RELRHO.H.HE, PUSH. 

DEPOSIT NEUTRON ENERGY, COMF ITE 4EUTR0N OUTPUT 
C f LL       i IEI ät \Ef 't' "•.-•". ' ;   R, REAC, ALPHA. THEAT. ', • . HZ 
;ALL      OUTPUT(R.CYCLE TIME,DI DRENG, NFUEL,NSPACE.VEL.FHt 

7.. ZPUSH, ELEC,TE,TI,TR, REAC .. TREAC . THEAT, FLU, RELF HG, H. HE. PUS*-. 

DEPOSIT ALPHA ENERGY, ADD ALPHA MASS 
IAL PH • 0 
CALL ALPHA KR, AMASS,V,H,HE,F USH. ELEC, TE. T1 . REAC. DT. MSP ACE . 

NFUEL, ZPUSH,PMASS [ALPH.THEAT,ALPH* ) 
CALL      OUTPUT (R, CYCLE,1 IME.D1 , I RENB, NFUEL, NSPACE, VEL,  C 

"., ZPUSH, ELEC. TE. I"I,TR, REAC TREAC,THEAT,FLU.RELRHO,H,HE,PUSH, 

CALCULATE RADIATION ENERG\. HEAT CONDUCTION 
CALL       HTFLX <R,TE,TI, TR, ELEC,V, H,HE, PUSH.AMASS,NSPACE,H 

*  HEMA3S,PMASS.DT.F R) 
CALL      OUTPUT(R,CYCLE, 1 IME.DT , DRENG,NFUEL.NSPACE.VEL.RHC 

p.fcS 
760= 7., ZPUSH, ELEC, TE., T 1, "i R, REAt . 1 REAC, THEAT, FLU, RELRHO, H, HE. PUSH, 

DRVENG) 
77•> Ci f * # * * + * * *#***%%%*%%% * % t * % *.%%% # * * * * * % üf 
780= EMI 
- g <"•-•• r i, ** * t :****• *  • • * *    * * + * f j| ;  •• •, - im fcj • ,.M- 

•   :- SUBROUTINE   GDATA    • I  . DT.1 E. " 1, TF , NSF£ CE. NFUEL, T 3 ME, H. HE. PUSH 
.CYCLE, 
..LIST   300.2500 

800= 
.CYCLE, 

810* 
WEH?. 

S20= 
830« 

H(IOi), 
340= 
850= 
- b< 
870" 

SUBROUTINF BDATA (R.DT, TE, TI, TR. NSPACE.NFUEL,TIME.H.HE.F USH 

1   ZPUSH. PMASS. DMASS. TMASS. AMASS. ELEC, V, HEMASS. DEL V, PR. :-^D, F 

*   HMASS.DRVENß-TREAC. " HE* 7.VEI..ALPHA) 
DIMENSION R<101 > , TE •: 101 ) ,TI ( 101) , TR(lOl) ., H<101) .HE'lOi ) ,-US 

1   ELEC(101),AMASS(101 ).DELV(101),PR(101)»v (101),VEL(101) 
DIMENSIDN DRVENG (101). TREAC (101) ,. THEAT < 1 0 l i . ALFHA (1 01) 
INTEGER CYCLE 
RTF * 4.*ATAN<1.) 

S80*C  SET MASSES OF COMPONENTS (QMS) 
890-      DMASS • 3.341-24 . 
?00»      rMASS - 5.02E-24 
910"      HMASS • (DMASS + TMASS)   2. 

HEMASS-6.&4E-24 
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- - .-    • u  , - •  • •::•(- 

95*: - : IME i i 
960» CYCLE » 0 
970=C SET NUMBER OF CELLS 
^80= NSF ^CE =4 0 
or -.•- NEPC,1 =  S  " " ~  • 
(X r ft:.:' HYDROGEN Dl ISITN (SM/CM3) 

• - - ••. .-.- •:,.;.  CM) AND ! '" RM: ••    . 

i _— .:• - 

• =C MI [M !^: TIME STEP 
1 »60= DT=i.E-12 
1070-C FIND AVERAGE Z DF PUSHER ATOMS 
. B0= ZPUSH=SGRT (77. > 
1090= DO 1 N=i,NSPPl 
1100=C COMPUTE WALL POSITIONS (CM) AND VOLUMES (GM3) 

• : io= R (N) = or * (N-i> 
! .20=« RF3 =s (R<N)+DR)##3 

2 130= V(N5 - 4.*PIE*(RP3-RM3>/3. 
. . 1 :>= RM3 = RP3 
1150=0 COMPUTE MAES IN CELL (GM) 

SO- HiiASS<N) = HD*VCN) 
1170=C COMPUTE NUMBER OF PARTICLES 
U50= H(N) = AMASS<N)/HMASS 
1190= HE CM) = 0.0 
: 200= PUSH(N) --   0. 0 
1210= ELEC(N) = H(N) 
1220= ALPHA(N) = 0.0 
1230-0 SET VELOCITIES (CM/SEC) AND VOLUME CHANGES (CM3) 
1240= VEL(N) * 0.0 
1250= DELV(N>=0 
1260=C INITIALIZE RADIATION CEE3EUFE 
1270« PR(N)«0. 
1280=C SET CELL OUTPUT (ERBS), REACTIONS, AND CE;-L HEATINS (ERGS) 
1290= DRVENG(N'=0. 
1300= TREAC(N)=0. 
1310= THEAT(N>*0. 
1320«C AMBIENT TEMPERATURE FOF CELLS WITH NO ENERGY INPU1 (!'EV> 
1330= TE(N) = l.E-7 
1340» TKN) = \ .E-7 
1350= TR(N) • l.E-7 
1360= 3 THEAT(N) = 0.0 
-370=C YOU HAVE TO HAVE MORE F-VALUES THAN OTHER VARIABLES, 
13S0«C SD THAT THERE IS A VALUE OF R<N+1) FÜF THE LAST ZONE 
1390-C 
I400«C SET NUMBER 0'r FUEL CELLS 
1410- NFUEL • NBPACE 
I420-C INPUT ENERSY (LEV) 
15 30= DO 2 N=l,NSPACE 
14 40= TR<N)»1. 
1450« TI(N>»5. 
1716 0= " TE(N)»5. 
14 70= RETURN 
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-   .L i 

1560= 

" 

- •    '      El :"       " H.I IAC.TREAC. I&L'f 
DIHI     •      IN  V<101> . TRLY.CUOl; , 

- •  -      -    -       '     |       POE   N   ~r:' I  ' 
•• :    • EL   )W 

f  [TAR!  -   1.0 
F   .- 

. :     REACTIONS 1   E ELLS IN THIS DT INH 

DO 1 I-l.NSPACE 
:     t > -- 0 . 

TE   ' IEI  H      :  ' .  JNTl TON TE       • -  • 

' 
F      Ni " 

160   =C 
1610= 
1620= 
-. 630= 

E 
1650= 
i 6 :    i 
i 670= 
. >a' 
ltrr    » 

: • 

1710= .   -. , ..   _ 

17:   • 
1740= 
1750= 
1 760= 
1770=C 
[7S >= 

- 
•    .- - 

il HE D M    ANY ;Ei .- r _   F-TU? ' WI1 H ; • JF    ' F I 

182C C 
E i 

3C'=C 
HE 

18-1 
1850-C 

15-30=0 
i 

I870«C 
ieso- 

90« 

REl.RHO. 
I ;;•; -. 

': HD, 
•  20* 

[NITIi iTED 
LG 2 I=1,NFUEL 

2 IF(Tl<I).SE.TSTART> IBURN=1 
IF ! IBURN. EC . ?•'    F E 'r )RN 

COMPUTE NUMBER OF REACTIONS CD+1 DNI  ) IN EACH CELl OF FUEL. 
DC 3 I=1.NFUEL 
IF (TI(I).LT.0.01) THEN 

REAC(I) = O.0 
GO TO 3 

•'•:- 

41E-14)*TM23*EXf - E t  Ti'ii' '. 2 1 7'*TN2 ..) E[8VDT= 
GO TO 5 

4 SIGVDT« (3.8E-12)*TM23*EXP<-19.02*TM13) 
5 REAC<I>= DT* CH(I> **2>*SIGVDT/<4.0*V<IH 
REMOVE BURNED FUEI NUCLEI FROM CELL 

H(I)= H(I - (2.0*REAC I) 
ADD NUMBER OF REACTIOI i EN THIS DT TO TOTAL FÜR EACH CELL 

f  : .-.,- ;i>3 TREACU ) - F £AC £ 1 ) 
:: CONTINUE 
ADJUSTMENT OF ELECTRON NUMBER IN EACH CELL WILL BE PERFORMED 

ANOTHER SUBROUTINE WHEN THE CHARGED PARTICLES PRODUCED IN "• 

REACTION HAVE BEEN TRANSPORTED TO OTHER CELLS. 
UNITS IN THIS SUBROUTINE ARE: TEMP IN IF1'.. VOLUME IN CM CUBED 

REACTIONS IN NUMBER OF REACTIONS IN EACH CEL- 

ANO SIGVDT IN PER CM CUBED PER SECOND. 
RETURN 
END     ' 
SUBRO JTINE HYDRO(F .VEL.D1 . TR,1 I,TE, NSPACE, TIME CYCLE, TPiJ^';, 

1 H. HE. ELFC. PUSH, i tM* B.PMi* SS, DMASS, TMASS. HEMASS, PR. DEL.V, HD. P 

:  NFUEt . V 
•   MENSION R < i01), PT <101).PI<]01).PE(101), PP (I01). 
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"     ' • «"»»»»»»»—-""""-"j^^———"   •'••    '  .•-..... 

'•• !  5 (10n . VEL IOD.TF     . "   I . • -.•          (101) , T3  01 • , 
- 1     H<101) ,H£< 101) ,PU=H< 10 J  E'i.EC     .    •}    . 
960= 1      DEL" (101). RELRHO (101) , RHO I I 01 I . ACC (101! 

1980= SIGMA = 5.67E-5 * (1.161E7>**4 
1990» A = 4. * SIGMA / 2.997E10 
2000* HMASS - (DMASS + THASS)/2. 
2010= DTMAX = l.E-10 

. 20= 2YCI E = CYCLE + : 
2030 PIE = 4. *ATAN • 1 • ) 

! • 10 I=1.NSPACE+1 
!>50= IFUEURN.NE.O)  iMASS (I) «H (I) *HMASB+HI ' .": • KHEMi..". : • :        • .- 

2060= PI (I) - (H(I)+HE(I)+PUSH(I) ) *TI (1) *i.6E-£j  .•>.•. I • 
2070= PR(I) = A * TR(I)#*4 ' 3, 
2080=C NOW OBTAIN EFFECTIVE ELECTRON TEMP TO ACC0UN1 FOi DEGENERACY 
2C>oo= EFFTE = 0.00565* (AMASSU )/V(I) )#* (2./3.) 
2100= IF((I.GT.NFUEL>.OR.(EFFTE.LT. TE I 3 > > ) EFFTE^E'7' 
2110= PE(I) - ELEC(I) * EFFTE * 1.6E-«? /V (I ) 
120= PT(I) = PE(I) + PI (I) * F'F: (I ) 

2130=C INITIALIZE DENSITIES AND SET Q=0 FOF FIRST -'-Cl-E 
2140= JF (CYCLE. EQ. 1) RHO(I)=AMASS(1) '*, . ". ) 
-  150= IF (CYCLE.EQ.l) Q(I)=0. 
2160- 10 CONTINUE 
2170= NOW FIND TIME STEP 
2130= DO 15 I=1,NSPACE 
2190= C = 3QRT(5./3.*PI (I)*V(I)/AMASS(I>) 
2200= FFACT=.3 
1 2 : '.  ' DTI: FRACTifc (F; (I + i ) —F. < I ) ) /C 
2220= IF (DTI.LT.DTMAX) DTMAX=DTI 
2230= IF (DTMAX.LT.DT) DT-DTMAX 
2240= 15 CONTINUE 
2250=£ NEXT FIND ACCELERATIONS DF CELL WALL 
2260= DO 17 I=1,NSPACE 
2270= AN=-(PT(I+t)+G(l+l)-PT(I)-£M I)) 
2280= IF (I.NE.NSPACE) AD=(R(I+2> -R(T> > /2. * (RHO (I+-1) +RHO <I> ) /2*. 
2290= !•'-    U.EQ.NSPACE) AD«(R (I+i>-R (I) ) * (RHOU + 1 >+RHQ<I> )/2. 
2300= ACC(I)«AN/AD 
2310=G NOW FIND VELOCITIES OF CELL WALL 
2320= VEL<I)»VEL(I'+ACC(I)*DT 
2330= 17 CONTINUE 
2340»C FIND NEW POSITIONS OF CELL WALL 
"350= DO 19 I--1.NSPACE 
1360= R(I+1)=P(I+1)+VEL(I)*DT 
2370= 19 CONTINUE 
23B0-C COMPUTE NEW DENSITIES AND VISCOSITIES 
2390« DO 20 I=1.NSPACE 
Z400- RHOOLD-RHO <I) 
2<' 1 0= VOLD = V < I ) 
2420= VCI; • 4./3.*PIE*<R(t+l>**3-R<I>**3) 
2130= DELV(I) = V<I) - VOLD 
24A0" PHD(I)«AMASS(I)/V <I) 
2450- RELRHO<I>«RHO(I1/.213 
2460 - DIV«<1.-RELB HO(I>)/Dl 
2470= 0 < I) «RHO (I> * (R<I+1>-R<I)) * (R<I*1)-R(I)) *DXV*DXV 
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I •'• 

.6E.0 
• •; 

2500= Ti i I • »' 1    I) - < 
) ) 3 
. .LIST r 5' X>, 27006C'0 

Ü M )       ' . 

ü./3.)*(PI(I)+£ 1 ) ) *PEI 1) / '. 1. «sE-9» i • * -t i 

.!•••'' 11) ) DEL j . 6E-9» CH(I) 

. . ji 

2550= 
2560= 
2570= 
2380= 
-C7-- -,„ 
_ -J ' '•-' •" 

2420« 
2430= 
2440" 

01) 
2450= 

E - ~   ELEC (I) 3 
> **.25 

i -1 7 ' 
:4S": 
>490 
'SO 0! 

•-,.-, 

520= 
2530 
»540* 
2550= 
?5fe0 
?570' 
1580 
»590» 

C 

=c 

=c 

«c 

-r ( T ) -75 (I)-(2. /3. ) *PE<I) *DELV< I) 
"-    I)    •  TRd    *< CVOI D-DEL'%  13      3. 5 

IFCTE    I•. L7.i    E-73       TE    I    = 1    7-7 
IF<TRd;.LT.l.E-7)      TRd)=l.E-7 
CONTINUE 
TIME=TIME+DT 
RETURN 
El IE 
SUBROUTINE NEUHEAT(NSPACE,  R,REAC,ALPHw,TflEAT,o.H.HE1 
DIMENSION ALPHAUOl ,REAC< 101 ) .EX 0; 101 > ,D< 101) .P(lOl) 
DIMENSION THEAT OOi).^ 101) , HUOJ >„HE(101), ANO< 101), AVSE1 

D, T, AND HE CROSS-SECTIONS *RE APF'RQV IMATELY 
.8 BARNS FOR IH.1   MEV NEUTRONS.  AN AVERASE 
ENERGY PER COLLISION 18 FOUND BY AVERASINS EACH 
REACTION3 ENERGY DEPOSITION AND THEN SUNNING 
BASED ON NUMBER FRACTIONS.  THEAT RECEIVES "• ' 
ir- rsjf}) ENERGY D! F'OSITED [N EACH CELL.  ALPHA 
IS THE EQUIVALENT NUMBER OF 3.5 MEV ALPHA 
PARTICLES FDR THE NEUTRON ENERGY DEPOSITED. 

SIGMA - .8E-24 
TOT I NT = •: . 
DO 1 1=1,NSPACE 

BNO • H<I) + HE(I; 
AVSEN(X) =• ((.5tH(I)*2.35)/SN0) + >*H(I)*3 .7825' /BNO) 

2600= *              dHFd )*1 „4>/BNO) 
2810= ANO(I) «(H<I) + HEU?) / Yd) 
2820= TOTINT = TOTINT + REAC(I) 
7630= 1    CONTINUE 
2a40= S = TOTINT 
2650= EX(O) - 1. 
1660= DO 2 1=1.NSPACE 
2670= RI = R(I+1) - R(I) 
2680= EE - EXP(-ANQd) *SIGMA*RI) 
2690= EX(I)=EE * EXd-1) 
2700- ACTIONS = S * (1. - EE) * EX(1-1) 
2710= THEAT d> = ACT lONStAVSEN (I) » (1 . 6E-6) 
2720= ALPHA(I) - THEAT(I) / (3.5« <1i6E-6)) 
2730= 2    CONTINUE 
2740= RETURN 
2750= END 
2760=-- SUBROUTINE ALPHA11R. AMASS, O. H. HF ,PUSH,ELEC,TE,TI,REAC. DT.N8 

PACE. 
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+ NFUEL.ZPUr>H,PM  • • .'-I1 PH.THEA1    '- PHA) 
DIMENS ION   Al PHA (101 - 
DIHI NSH iN   THETA ill)    E! LEC • :•   i • . E - ... I   J    1 
r. I HENS I ON   R < 10 i ) . AMASS < 10 i ) , V :. tOl ) . HE (101 ) , PUSH < 101 ) . ELEC (1 

+ TEOOli.TKiO!) ,REAC<101 ) .H< 101 '/ . THE AT ( 101) 
DATA   THETA/O. . . 7467BB0321, . 9899779077. 1. IS 6752093, 1 - 3871656 

J.570796327, 1.754427031 . I.94484056   ,2. 15161 »746. 
•+ 2. 39480462 1,3. 141 3 ? 2€ ~ ••• 

DATA   P]  '3.141592654/ 
DO   10   I»l,101 
EELEC(I)=0. 

.': 0   EIONd>»0.  ' 
DO 2000 I ZONE« 1., NFUEL 
IF<IALPH.EQ.0) GO TO 250 
DO 1000 ITHET»!,11 
ISTOP=0 
THET»THETAdTHET) 
U= i. 
XO»<R(I ZONE > +R(IZONE+1))/2. 
THETO«THET 
INOW»IZONE 

29B0»C 
2990=C*****#* STASE FOR BIRTH SHELL 
3000»C 
30 lO»      IF (I THET. EQ. 1) CALL X YT6 (I NOW. R, X N, THE TN.. D1 ST . I DUM. X 0) 
3020-      IFdTHET.NE. LAND. THET. LT. PI/2. ) CALL XYT7<XO, I NOW, THETO, R, 

DTST. 
•' >30=     ••- ICELL, XN,THETN) 
3040=      IF<ITHET.EQ.6) CALL XYT3 <XO,XN,DIST, THETO,THETN,INOW,R) 
3050*      IFdTHET.NE. 11. AND. THET. ST. PI/2. > CALL XYT<1 (XO,XN,DIST,THET 

0. 
3060=     + THETN,INOW,R) 
3070»      IFdTHET.EQ.il) CALL. XYTS < X0„ XN, DIST, THETN, INOM,R) 
3080=      XO»XN 
3090=      THETO=THETN 
3100=C 
3U0»C****** COMPUTE THE INTEGRATION INCREMENT 
3120=C 
3130=      ALPHS-REAC<I ZONE)/11. 
3140-      IF(ITHET.EQ.1) ALPHS-REAC<I ZONE)/11.+ALPHA (I ZONE) 
3150«      TEMPE=TE(IZONE) 
3160=      DENSE=AMASE(I ZONE)/V(IZGNE) 
3170=      CALL FINDDS(TEMPE,DENSE,DS,DIST, IDS) 
3180=      ICELL»IZONE 
3190=      CALL ELOSS(DENSE.TEMFE.U.DS, DIST. EELEC. ElON.1CELL. I STOP.I AL 

PH, 
3200=     + IDS.THEAT.ALPHS) 
3210=      IFdSTOP.ED.1) ICELS-ICELL 
3220=      IF(ISTOP.EQ.l) GO TO 600 
3230=C 
3540«C**t*** STAGE FOR SUBSEQUENT MOTION OUT OF BIRTH SHELL 
3250*C 
3260=      DO 500 ILOOP»1. 1000 
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• '•' »wn ' 

PH. 

3270= IF<X0.GE.R<NSPACE+1)) BO TO 600 
. . I A 

3290» IF(THETD.6T.0.0. AND.THETQ.LE.PI/2. 3 CALL X v V? i KQ, I NOW, I HE I u 

7300= +                                      R.DI5T.ICELL.XN.THETN) 
3310« IF(THETO.ST.PI/2. 0.AND. THETO. LT . PI) CALL X YT8(I MOW.THETO,XO 

3320= +                                      THETN,XN.DIST.R) 
3330= IF<THETO.EQ.PI) CALL- XYT9(INOW,XO, rHETO, R, ICELL, DIST, XN, THt 

I) 
1740^ IF<ICELL.GT.NSPACE) BQ TO iOOO 
3350- TEMPERTE<ICELL) 
3360* DENSE=AMASS (ICELL) /V (ICELL) 
3370= CALL FINDDS(TEMPE,DENSE,DS,DIST,IDS) 
3390= CALL ELOSS<DENSE,TEMPE,U, DR. DIST.EELEC.EION,ICELL.1 STOP,IAL 

:>= +                                IDS, THE AT. ALPHS) 
0= IFdSTOP.EQ. 13    ICELS=ICELL 
!>= IF(ISTOP.EQ.l)   GO  TO  600 
0= XO^XN 
0= THETO=THETN 
0 - 5 0 0 C D N TINUE 
.<= 600 CUNT . NUE 
0= HE <I GELL)=HE(ICELL i +ALF- HS 
I'- AMASS < ICELL)«AMASS <] CELL) +ALPHS*6.635E-24 
0= 1000 CONTINUE 
:j= GO TO 2000 
0= 250 CONTINUE 
:>= AL:-'HS= REAC (IZONE) +ALPHA i I ZONE) 
C= HE <IZONE)=HE(IZONE)+ALPHS 
>•= AMASS < 1 ZONE) ---AMASS < I ZONE) -»-ALPHS * 6,. 635E-2 ;1 
0= DENSE = AMASS(IZONE)/V<IZONE) 
.">=• FI = 1. / C1.+ (32. -.B68*ALQS (DENSE) ) 'TE< IZONE) ) 
0= EIGN<IZ0NE)*3500; *ALPHS*FI 
:>= EELEC(IZONE) =3500. «ALPHS* < i .-FI) 
0= THEAT(I ZONE)=3.3*1.602E-6*ALPHS 
> 2000 CONTINUE 
0=C 
:>=C****** COMPUTE NEW TE. TI 
o»c 
D«= DO 700 IZONE«i,NSPACE 
0= ETOTE-3./2.*TE(IZONE)*ELEC(IZONE) 
"'= ETOTE---ETOTE+EELEC < I ZONE> 
0" TE(I ZONE)=ET0TE*2./3./ELEC <I ZONE) 
j= ETOTI-3./2.*TI<IZONE)*H<IZONE) 
0= ETOTI=ETOTI+E TON <I ZONE) 
3= TI (IZ0NE)=ET0TI*2. /3. /H •'. IZONE) 
0- 700 CONTINUE 
> RETURN 
0= END 

SUBROUTINE   ) YT3 ( XO. XN. 1>1 ST. THETO, THETN, JNOW.R) 
0» DIMENSION   P(101) 
> RR»R<IN0W+1) 
0« XN=RR 
j~ ANGr_-ACOS(XO/RR) 
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37£i .->-,.;- *R*SIN(ANG) 
375 >« THETN=THET0~AN8 
3800* DI3T=YTEMP 
3810» INOW-INQW+1 
3820= RETURN 
3830= END 
3945= BUBROUTINE XYT4(XO,XN,DIST. THETO.THETN, INOW,R) 
3850= DIMENSION R<101) 
3360- CALL RETA(THETO.A) 
3870= CALL GETS(XO,THETO,B) 
3880= PR=RUNOW5 
3890= RR1=R(INQW+1) 
3900= CALL GETC<RR,XO,THETO,C) 
3910= CALL SETC<RR1, XO,THETO,Cl) 
3920= DISC=B**2-4.*A*C 
3930= DI3Cl=B**.2-4. *A*C1 
3940= IF(DISC,BE.0.) CALL XYT4A(THETO,RR,XQ,B,DISC,A,XN,THETN,DIS 

3950= 
7960 = 

, .-• N ., 

3970= 
3980= 
3990= 
4000= 

CELL) 
4010= 
4020= 
4030= 
ii 040= 
-1030 = 
4060= 
4070= 
4080=C 

4100= 
A 1 -1 0= 
41.20= 

IFLAG, 
4 i 30= 
4140= 
-11 50« 
4 160= 
4170= 
4180= 
4190= 
4 200= 
4210= 
4220= 
4: so« 
4240= 
4250- 
4260= 
4270« 
4280= 

+ 0,IDUM) 
IF (DICC. LT. 0. ! CALL XYT4B ' I NOW, RR1, Th'ETG, XO, A, CISC t - B, THETN 

+ DICT.O,IDUM) 
RETURN 
END 
SUBROUTINE XYT4A(THETO.RR,XO,B,DISC,A, XN,THETN,DIST, IFLAG, I 

FT =3. Ml592654 
YTEMF- (-B-SQRT (DISC) > /2. /A 
XTEMP- (YTEMP-XO* TAN (PI -THETO > ) /TAN (THET0) 
DIST=-SQRT ( (XO-XTEMP) »»2+YTEMF **2) 
XN-RR 
THETN=THETO-ASIM(YTEMP/RR) 
I CELL..= :I NOW-1 
INOW-INOW 
IF(IFLAG.EQ.1) I NOW-1NOW-1 
RETURN 
END 
SUBROUTIME XYT4B(INOW.RR1,THETO, XO, A. DISC1. B,THETN,XN,DIST, 

+ ICELL) 
PI=3.141592654 
VTEMP-C-B+SQRT(DISCI> ) /2. /A 
XTEMP«<YTEMP-XQ*TAN(PI-THETO))/TAN(THETO) 
DIST"SQRT<(XO-XTEMP)**2+YTEHP**2) 
XN-RR1 
THETN=THETO-ASIN<YTEMP/RR1) 
ICELL=INOW 
IN0W=1N0W+1 
IF(IFLAS.EQ.l) IN0W=IN0W-1 
RETURN 
END 
SUBROUTINE XYT5(X0,XN,DIST,THETN, INQW,R) 
DIMEMSION R (101) 
FT «3, 141592654 
XN-R(INOW) 
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4300= 
4310* 

4330= 
4340= 
4350= 
4360= 
4370= 
4380= 
4390= 
4400= 
4410= 
•142?:'= 
4430= 
4440= 
4450= 
4460= 
4470= 
4480= 
4490= 
4500= 
4510= 
4520= 
4530= 
4540= 
4550= 
4560= 
4570= 
4580= 
4590= 
4600s 

4610= 
4620= 
4630= 
4640s 

4650= 
4660= 
4670= 
4680= 
4690» 
4700= 
4710= 
4720= 
4730= 
4740= 
4750= 
4760= 
4770= 
4790= 
4 790= 
4800- 
4310- 
4820« 
4830« 

I NOW«INOW 
DT31=ABSiXN-'>:2v 

IF(R<IN0W>.LE.0'. > THETN»0. 
RETURN 
END 
SUBROUT1NE GETA <THETO.A) 
A=l.+!./(TAN(THETO))**2 
F ETURN 
END 
SI IBROUTINE BETB ( XO. THETO,B) 
PI=3.14 15-2654 
ANUM=-2.*XO*TAN(PI-THETO) 
DEN== (TAN(THETO))**2 
B=ANUM/DEN 
RETURN 
END 
SUBROUTINE SETC(R.XG.THETO,C> 
PI=3.14 1592654 
ANUM*(XO*TAN(PI-THETO))**2 
DEN=(TAN(THETO))**2 
C=-i.*R**2+ANUM/DEN 
RETURN 
END 
SUBROUT I NE   XYT6 (I MOW. R. X N. THETN. D I ST. I P.rlLL . X Ü I 
DIMENSION R(101) 
XN---RCIN0W+1 ) 
THETN=0. 
ICELL=INOW 
IN0W--IN0W+1 
DIST=XN-XO 
RETURN 
END 
SUBROUTINE XYT7(X0.INOW.THETO. R, DIST, ICELL,XN,THETN) 
DIMENSION R(101) 
PI-=3. 14 1592654 
CALL SETACTHETQ,A) 
CALL GETB(XO.THETO.B) 
RR-RCINOW+1) 
CALL GETC(PR.XO.THETO.C) 
YTEMP«(-B+SQRT<B**2-4. *A*C) ) /2. /A 
XTEMP=(YTEMP-XO*TAN(PI-THETO> ) /TANt THETO) 
THETN=THETO-ASIN(YTEMP/RR) 
XN=RR 
ICELL=INOW 
IN0W=-1N0W+1 
DI8T-BQRTI(XO-XTEMP)**2+YTEMP**2> 
RETURN 
END 
SUBROUTINE XYT8 ' INOW. THETO, XO,THETN, Xli.OIST.R) 
DIMENSION R(101) 
CALL GETA(THETO,A) 
CALL GETB(XO.THETO.B) 
PR-R-INOW-1 > 
RRl-tR(INOW) 
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-. - •     ----   .;-.    rj   THE TO. C) 
CALL   GETC (RR1 . X2. Ti-.2": Q.Ci) 
DISC=B**2-4.*A*C 
DI3Ci=B**2-4.*A*C1 

DIBZ,Gh- XYT4 Q (THETO. RR. X0.. B.DI SC , Pi. > N. THETN .DIB 

+ ICELL) 
IF CDISC.LT.O. ) CALL XYT4B(INOW, FRi .THETO,XO.A.DISCI.B.THETN 

H DIST,i, I CELL-) 
RETURN 
END 
BUBROUTINE XYT9CIN0W, XO.THETO.R.]CELL, DIST,XN,THE", 
DIMENSION R(101) 
THETN=THETO 
XN=R(INOW-l> 
DIST=ABS(XN-XO) 
ICELL«INQW-1 
INOW*INOW-l 
IF(XN.EQ.0.)THETH-O. 
RETURN 
END 
SUBROUTINE FINDDS(TEMPE,DENSE,DS.DIST,TD3) 
RATIO«.213/DENSE 
ANUME=TEMPE**1.5*0.0S6+RA7]O 
DENE=i.+0.17*AL0G(TEMPE*SQRT(RATIO)) 
DE=ANUME/DENE 
ANUMI = 10.. 65*RAT ID 
DENI=1.+0.75*AL0S(5GR1 (TEMPE*RATIO)) 
DI=ANUMI/DENI 
IF(TEURE.LE.20.) D=DE 
IF(TEMPE.BT.20.) D=DI 
D*D/50. 
IDS-INT(DIST/D) 
IF(IDS.LE.l) IDS=1 
DS*DIST/ID8 
RETURN 
END 
SUBROUTINE ELOSS (DENSE, TEMPE, U, DS, DIST, EELEC, El ON, I CELL. 1ST 

i- IALPH, IDS. THEAT . ALPHS) 
DIMEMSION THEAT U 01> 
DIMENSI ON EELEC(101> , EION(101> 
SPE<D,U,T)»-23.2/D*SQRT<U) /T*tl.5t (1.+. 17*AL0B(T*SQRT<D) • ) 
SRI(B,U.T)=-.047/D/Ut(1.+0.075*ALQ6(SORT<T*DtU))) 
RAT 10=.213/DENSE 
IF(RATIO.EO.O..OR.TEMPE. EO.O. ) STOP 
DO 100 1=1.IDS 
FRACE-SPE(RAT10.U,TEMPE > 
FRACJ=SPI(RATIO,U,TEMPE) 
U=U+DS*(FRACE+FRACI) 
UTHERM=3./2. '3500.»TEMPE 
IF(U.LE.UTHERM) ISTOP»1 
IF(U.LE.UTHERM) GO TC 200 
EE-3500.*DE*ABS(FRAGE)»ALPH8 
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3 -r .** 
i ;jyt . 

. .--•„'- 

r: 390= 
ALPHS 

-•' %00- 
Ali " 

5420= 
VT   ••  - -, ... 

5440* 

i   - 

5 c 5 0 "' 
5690« 
5700= 

'50(  *DS*AI'>  rRACl »• i.'" HE 
I E E !. •• ! ELL) «EF.LEI  [CEIL >~EP 
E I QN ! ECEi I • =EI0N ICELL ) +CI 
THEAT (ICELL)»THEAl * iCELL >•*•.-. 5H DSU AB3<FI ACE i RACJ I • i .6«. 1... -. • 

IF ( IALPK. EQ. t. AND. El. BE. EE) Gü TÜ 300 
100 CONTINUE 
200 CONTINUE 

RETURN 
300 ISTQP*1 

EION<ICEI )=-£ION(IC=l L>+U*3500. kAL. HE 
" AV 1' TCEL^ A =THEAT (I :ELL. ) h3.5*i - <' 32E-6*U*ALPHS 
RE :URN 
r >A. 

SUBROUTINE HTFLX(R.TE,TI,TR, ILEC.V.H.HE PUSH. MASS,MSPftUb,H 

*  HEMASS, PMASS, DT, F:'R) 
DIMENSION R(iOl) ,TE<101) , TR(iOi) ,TI (101) .ELEC(iOl) , 

'A        V (101) , PR (101>, AMASS (101) , H ! 1015 , HE (101) , PUSH ( 1«' 1) 
REi L LOGLAM, ME, MI.K, KP, NU.NUB,NUC.KROS,LAMROS,NA20VA,NEP,MC 

572Q*C 
E73o=c 

RVATIVE 

HEAT CONDUCTION IS CONSIDERED USINC COEFFICIENTS TAKEN FROM 
FRALEY, ET AL. PHYS PL. VOL 17, NO 2, FEB 74. USING FLUX-CONSE 

Ü J""4 'a iN .,03 I!• ;" 

'   '.:•' =C 

5780=C 

5S>0=C 
—. n - ("i— 

5820=C 
5830= 
5340= 
... S50_ c 

5860= 
5870=C 
5880* 
5390= 
5900- 
5910-C 
5920«C 
5930=C 

B4C) 
5940-C 
5950=C 
5960=0 
5970-C 

ES AREA 
5980*C 
5990« 
..-,,- o« 
6010" 

ELECTRON MASS 

BOI TZMANNS CONSTANT IN ERSS/KEV 
K=1.38E-16*1.. 161E+7 

ELECTRON CHARGE 
E=4.8E-10 

PINE STRUCTURE CONSTANT 
ALP=*=1/137.04 
F1=3.14159 

SPEED OF LI GMT 
C—2.9979Ei J 

STEPHAN-BOLTZMANN SIGNA IN ERSS/CM2/SEC/KEV4 
SIGMA • 5.67E-5*I1.I61E+7)**4 
FLUXM«"0. O 
RFLUXM • 0.0 

COLLECT ALL OF THE CONSTANTS IN FRONT OF THE. DO-LOOP 
A AND B ARE USED IN LOG LANADA • LOSLAM 'EON B4C) 
D IS USED IN ELECTRONIC HEAT DIFFUSION COEFFICIENT.- KP (EQN 

F IS USED IN ELECTRON-ION RELAXATION RATE » NU (EON B4A) 
HI AND H2 ARE USED IN ELECTRON-RADIATION RELAXATION RATE 

«AERB + AEPC 
FLUXP AND FLUXM ARE EACH AN ELECTRON HEAT CONDUCTION FLUX TIM 

RFL.UXP AND RFLUXM ARE SIMILAR FLUXES TIMES AREA FOP RADIATION 
A-(1.5/E**3)#*1.5/SORT(PI) 
B-,5/ALP/C*SQRT<3./ME) 
D«20.*((2./PI)*tl.5)*K/(SORT(ME)*<E**4>) 
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6020= 
6030«= 
6040= 
6050« 
6060* 
6070* 
6080= 
6090=C 
6100* 
6110= 
6120= 
6130* 
6140* 
6130= 
6160= 
6170= 
6180= 
6190= 
6200= 
6210= 
6220= 

6240= 
6250= 
630C •• 
6310= 
6320= 
6330= 
6340= 
6350= 
6360= 
6370= 

6390= 
£400-' 
6410= 
6420=C 
6430* 
6440* 
6450= 
6460= 
bA 70= 

• mo 
•• 

', - 
..., r 

6520« 
6530* 

6550- 
6560= 
6570« 

F   *   B.OtSQRT (2. *F T W'z ) *E**4/3. 
HBARC«6.63E-Z7/2.'PI*C 
MC2*M£*C*I 
RO»E*E/MC2 
Hl«32. /3. *SQRT<(2./PI/HE))*(E*E*E*E)*K*RO/HBARC 
H2=(128. /3.)*PI#(E/MC2)*(E/MC2)*SISMA*RO 
DO   100   N=1,NSPACE 

ELECTRON-1GN   EXCHANGE   AND   ELECTRON   HEAT   CONDUCTION 
RP=R<N) 
Z2=ELEC(N>/(H(N>+HE(N)+PUSH(N) ) 
IF    (N.LT.NSPACE)    60   TO   10 
TP=TE(N> 
NEP*ELEC<N)/V<N) 
ZF-Z2 
GO   TO   20 

10     TP=„5*(TE(N+1)+TE(N) ) 
NEP=.5*CELEC<N+1)/VCN+1.)+ELEC<N>/V<N>) 
Z1=ELEC CN+J ) ,' (H(N+1)+HE CN+1 )+PUSH CN+1) > 
Z P—. 5 # (Z1+Z 2) 

20   EOT   =   .43#ZP/<3.44+ZP+„26*AL0S(ZP>) 
SCTE=50RT(TP) 
LOGLAM=-AI .08<SC1TE**3/NEF ' (ZP+B*SQTE) ) 
IF    (LDSLAM.LT.1..       L0BLAM*1. 
KP=D*(TP**2.5)*EDT/(ZP*L06LAM) 
MI   =    (HMASS*H(N) +HEMASS3ÜHE'.N>+PMASS#PUSH<N) ) / 

'/. •' H <  >":• +HE •' N) +PU8H CM) ) 
NU=F*ELEC<N)*ELEC(N>tLOSLAM/(AMASS<N)*V(N)*T£<N>**1. 
IF(N.BE.NSPACE-2)    GO   "0   22 
DTDRP   *   <TE<N+2>-TE<N>)/(R(N+2)~R<N)) 
GO   TO   23 

22 DTDRP*(TE(N+1)-TE<N) ) / (R(N+J )-R(i-J) ) 
23 FLUXP=-R<N+1)*R(N+1S*KP*DTDRP 

TE'M)    »   TE(N)    +   8. *PI/(3.*K*ELEC<N>>#(FLUXP-FLUXM)*D 
t        +NU*<TI(N>-TE<N)'+0T 

TT (| i) =TI ••'' i) -Z2*NU# (1 I (I!) -TE (N) ) *DT 
FLUXM   =   FLUXF 

RADIATION   DIFFUSION   CALCULATION 
IF    (N.LT.NSFACE-2)G0   TO   32 
TRR   *   TR(N) 
TRP3   =   TRP*TRP*TRF 
DTDRP   *   CTR(N>-TR(N-1>)/(R(N)-R(N-l)1 
.'EF   -    TE(N^ 

TEP72   =   TEP**3.5 
RHOPS   =      (AMASS (i!'  'V (N) ) **2 
RP=R M) *F (N) 

32 TRF - (TR (N+ t>+1 T CN) > /2. 
TFF3   -   TRP*TRP*TRF 
3 rDRF   -   <TR<N+2 ;F CN) ) / ER<N+2) -R CN3 ) 
TEF - <TE<N«-i>VTE(N))11. 
PRINT*„TEP 
TEP72   *   TEF+*3.5 

,   ..-  : AMASS .•.:•.;, |     . , ; .   • \\ .:,,,..-    .; 
- i      « t 

Vjf 
\C   .v5v° 
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OCJ'i I  ' 

6650- 

6680* 
• 

-.: 

•.' 10= 
6 '5« - 
-/•' bC ~ 
6770= 
6780» 
6790» 
6810» 
6820= 

6&80» 
Z.PMASS 

6690» 
DRVEN63 

6700» 
C (10 1 ) . 

U   101) . 

6730» 
6740= 
6750» 
6760 • 
6770» 
6780* 
6790» 
680 0=C 
6810» 
6820= 
6830« 
6840« 
6850- 
6860- 
6870« 
6880- 
6890» 

•     -    - 

F . ;• |   •    • • 

•     j .      ; r-    r -..-.-•:  . 

G»PI tPI/4.-<PI*PI/4.-l> *EXP(-A1) 
TP4   =   (TR(N)**2)**2 
TR"   =   TR4/TR(N) 

-   •-      3GR1    TE (M>>* < ELEC !N)*ELEI        '      '   : 

,'••--<   - '•;•"    TR4 
.~; U3   -   i .;";•:•,. 

-   CNL»3 I   : 
ERl    i •"• 

CNUR=16*SIGMA/C*V<I   •    AMAS5(N)*TR^ 
TE<N)    »   TE<N)   -   AER*    TE(N>-TR'N)>»DT/CNUE 
TR(N)    »   TR<N)    +   AER*<TE(N>-TR(N>>*DT/CNUF 

7. - (RFLUXPJ-RFLUXM>*4.*PI*DT/(£ (N>*CNUR) 
RFLUXM   -   RFLUXP 

1> i   CONTINUE 
r' ETl RN 
~ ID 

BUBROUTINEOUTHJT(R,CYCLE, TIME.DT,DRENG,NF! El ,NSPACE,VEL , 

"•:. ZPUSH. ELEC,TE, TI, TR, REAL . TREAC. THEAT . FLU. K^ LRH•, H, HE . PU 

DIMENSION   VELU01).RELRHO(101>,HC10i: ,HE(101)»PUSH(101 ) , 

'/.   TEU01>,TI<101) , TRH01) „REACC103 ) . TREAC i lOl) „THEA1 (101) 

'/.     DRV£NGUO1>,R<101) 
INTEGER CYCLE 
TPL0T«TIME*1.E9 
DTPL0T=DT*1.E12 
EIPL0T«DREN6*1.E-10 
EOPLOT-0. 
DO 2 N«i,NFUEL 

2  EOPLOT«EÖPLOT+REAC<N)*2.E16E-J5 
EOPLOT IS KJ RELEASED BY DT BURN 

PR TNT i 01. CYCLE. TF". QT, DTPLOT, EI PL DT. EOPLOT 
PRINT 102 
PRINT 104 
DQ 10 N«J.NRUEL 
RPLDT«R(N)*10. 
VPLÜT-VEL(N) »l.E-8 
OUTF L-TREAC(N> *2.816E-12 
HTPLT-THEAT(N>*1 .E-7 

10 PR INT 103.N,RPLOT,VFLOT. REAC(N).RELRHO < N) .TE <N>,TI<N>,TR 

RHÜ 

BH, 

ELE 

.FL 

N> 

6900--- '/OUTPL .. HTPLT,FLU(W) 
6910= IF(NFUEL.LE.NSPACE) GO TO 200 
6920- PRINT 105 
6930= NFP-NFUEL-M 
6940- DO 20 N-NFP,NBPACE 
6950- RPLOT-R(N)tl0. 
696'"' VPLOT-VEL (N) * 1 . E-8 
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• ; t  DRVENG CN1 » 1 ."-"•' 

i    ?0=   20 PRINT 103,N,RPLQT,VPL0T,REA( • i. ' . RELRHÜ • Iil •    E i : • .      TR(N) 

"/.OUTPLQT . HTFLT , FLU(N) 
7 10*  101 FORMAT [*1 CYCLE = ',14,3X.'TIME =',F8.4,'NS   DT = ', 
• 20=     '/.F8.4,'PS   rNPUT ='.F8.4, I J   DUTPI T - ,F8.3.'KJ', 

HONE >2 F( "MAT ' i ..'>'. Ri il [ a 
t 4X, ' DEN? ] 1 •' . .   EL. TEMP',  ,'10 
2 SX.'OU' UT'.4X,'HEATING ,5X,'NEUTF ;: . - "  '1 , 9X„'(«Ml . 
3 fv. " (MM/NS) " . -<v. ' l"HIS DT' ,33     NOR! tl • " . •'    '  (KEV) '. 

070=     47X, ' <REV) ' ,7X, ' <KEV ', 5X, '(JOULES :' . 1 • ' JOULES) ' ,5X, 'FLÜEN 
"* '/ 
7080=     5) 
7090* 107  FORMAT < 1 X. 15. 2F12. 6, 1 F'E 1 2. A . OF', tiF i2. 3,1PE12. 4) 
7100=  104 FORMAT (7 FUEL',//) 
7110»  105 FORMAT (//,' PUSHER'.90X.'1NPUT'.//) 
7120=  200 CONTINUE 
7130=      RETURN 
7140»      END 
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APPENDIX B 

Glossary of Variables 

Variables used in program MOXNEX are defined or 

described below.  Global variables are discussed, followed 

by the non-global variables used in each subroutine. 

Variable 

ALPHA(I) 

AMASS(I) 

CYCLE 

DMASS 

DRVENG(I) 

DT 

ELEC(I) 

H(I) 

HD 

HE(I) 

HMASS 

HEMASS 

Table 9 

Global Variables 

Definition or Description 

Equivalent number of 3.5 Mev alpha 

particles computed from energy transfer 

from neutron-ion collisions. 

Total mass in grams in zone  i 

Total program iteration counter 

Deuterium mass in grams 

Output in ergs of zone  i 

Time step in seconds 

Total number of electrons in zone  i 

Total hydrogen nuclei in zone  i 

Hydrogen density in grams per cubic 

centimeter 

Total number of helium-4 nuclei in zone  i 

Average hydrogen mass in grams 

Helium mass in grams 
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NFUEL 

NSPACE 

PMASS 

PUSH(I) 

PUSHD 

R(I) 

TE(I) 

THEAT(I) 

TI(I) 

TIME 

TMASS 

TR(I) 

TREAC(I) 

V(I) 

VEL(I) 

ZPUSH 

Variable 

DELV(I) 

DR 

NSSP1 

total number of fuel zones 

Total number of zones 

Pusher mass in grams 

Total number of pusher atoms in zone  i 

Pusher material density in grams 

per cubic centimeter 

Radial distance of zone  i  in centimeters 

Electron species temperature in kev in 

zone  i 

Total heating in ergs of zone  i 

Ion species temperature in kev in zone  i 

Time in seconds 

Tritium mass in grams 

Radiation temperature in zone  i 

Total number of reactions in zone  i 

Volume in cubic centimeters of zone  i 

Velocity of cell wall  i  in centimeters 

per second 

Average atomic number of pusher material 

Table 10 

Subroutine GDATA Variables 

Definition or Description 

Change in volume in cubic centimeters 

Zone width in centimeters 

NSPACE + 1 
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PIE 

pR(n 

RM3 

RP3 

Variable 

ACC(I) 

AD 

AN 

C 

DIV 

DTI 

DTMAX 

EFFTE 

FRACT 

PE(I) 

PI(D 

IT 

Radiation pressure in ergs per cubic 

centimeter 

Inside zone radius in centimeters cubed 

Outside zone radius in centimeters cubed 

Table 11 

Subroutine HYDRO Variables 

Definition or Description 

Constant • 46~/c  for radiation pressure 

calculation 

Acceleration of zone wall  i  in centimeters 

per second 

Denominator for acceleration computation 

Numerator for acceleration computation 

Speed of sound 

Divergence of velocity 

Interval time step 

Maximum time step 

Effective electron temperature 

Fractional value for time step calculation 

Pressure in ergs per cubic centimeter due 

to electron species 

Pressure in ergs per cubic centimeter due to 

ion species 
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—PW 

PIE 

PR(D 

PT(I) 

Qd) 

RELRHO(I) 

RHO(I) 

RHOOLD 

SIGMA 

VEL(I) 

VOLD 

Variable 

I BURN 

SIGVDT 

TM13 

TM23 

TSTART 

Pressure in ergs per cubic centimeter due 

to radiation 

Total pressure in ergs per cubic centimeter 

Artificial viscosity in ergs per cubic 

centimeter 

Relative density, current density over 

ambient density 

Density in grams per cubic centimeter 

Density during previous iteration 

Stephan-Boltzmann constant in ergs per 

square centimeter per second per kev 

Cell wall velocity in centimeters per 

second 

Volume during previous iteration 

Table 12 

Subroutine TBURN Variables 

Definition or Description 

Logical flag used to carry burn status 

to other subroutines 

<OV>DT 

Cubic root of ion temperature 

Ion temperature to the 2/3 power 

GO/NO GO temperature for thermonuclear 

burn 

122 



wmm "" 

Variable 

ACTION 

ALPHA(I) 

ANO(I) 

AVGEN(I) 

BNO(I) 

EE 

EX(I) 

S 

SIGMA 

TOTINT 

Table 13 

Subroutine NUHEAT Variables 

Definition or Description 

Total number of interactions 

Equivalent number of 3.5 Mev alpha particles 

computed from energy transfer from neutron- 

ion collisions 

Ion number density in zone  i 

Average energy lost by a neutron during 

collision with an ion 

Total ion number in zone  i 

Probability neutron penetrates zone  i 

Probability neutron penetrates zone  i+1 

Total number of neutrons 

Neutron-ion cross section 

Total number of neutrons 

Subprogram ALPHA1 is discussed by subroutines. 

Table 14 

Subroutine ALPHA1 Variables 

1.  Subprogram ALPHA1 

Variable        Definition or Description 

ALPHS Number of new alpha particles 

DENSE Zone density in grams per cubic centimeter 

EELEC(I)        Energy transferred to electrons in zone  i 
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EION(I) 

ETOTI 

ETOTE 

FI 

IALPH 

ICELL 

ICELS 

I LOOP 

INOW 

ITHET 

I STOP 

I ZONE 

TEMPE 

THET 

THETA(I) 

THETN 

THETO 

U 

XN 

xo 

Energy transferred to ions in zone  i 

Total energy of ions 

Total energy of electrons 

Fraction of energy deposited in ions 

Logical flag for energy deposition position 

Zone number into which alpha particle is about 

to decelerate 

Vestigial statement 

Simple loop parameter 

Current alpha particle position on radial 

mesh 

Index for angular mesh 

Logical flag to signal alpha particle 

thermalized 

Radial zone number 

Electron temperature 

Particular angle of angular grid 

Angles of angular grid 

New theta angle 

Old theta angle 

Remaining fraction of alpha energy 

New x coordinate 

Old x coordinate 
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2.  Subroutine XTY3 

Variable Definition or Description 

ANG 

DIST 

RR 

YTEMP 

Angle measured from microsphere center 

from birth point to exit position 

Distance traveled within the zone 

Radius of zone being entered 

Distance traveled within the zone in the 

y direction 

Subroutine XYT4 

Variable 

DISC 

DISCI 

RR1 

Definition or Description 

Discriminant of the solution of the 

equation of the line of travel with the 

circle representing the next inner zone 

Discriminant of the solution of the equation 

of the line of travel with the circle 

representing the next outer zone 

Radius to the outside of the zone being 

entered 

Subroutine XYT4A 

Variable 

XTEMP 

Definition or Description 

Distance traveled within the zone in the 

x direction 
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5.  Subroutine XYT4B 

No New Variables 

6.     Subroutine XYT5 

New New Variables 

Subroutine GETA 

Variable Definition or Description 

Coefficient of the solution of the 

intersection of a line with a circle 

8.  Subroutine GETB 

Variable 

ANUM 

B 

DEN 

Definition or Description 

Numerator for coefficient calculation 

Coefficient of the solution of the 

intersection of a line with a circle 

Denominator for coefficient calculation 

Subroutine GETC 

Variable Definition or Description 

Coefficients of the solution of the 

intersection of a line with a circle 
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10.  Subroutine XYT6 

No New Variables 

11.  Subroutine XYT7 

No New Variables 

12.  Subroutine XYT8 

No New Variables 

13.  Subroutine XYT9 

No New Variables 

14.  Subroutine FINDDS 

Variable 

ANUME 

ANUMI 

DE 

DENE 

Definition or Description 

Numerator for range calculation if 

electrons only decelerate alpha particle 

Numerator for range calculation if ions 

only decelerate alpha particle 

Intermediate variable supporting integration 

increment calculation 

Range of alpha particle in zone if zone 

goes to infinity and only electrons decelerate 

it 

Denominator of range calculation if electrons 

only decelerate alpha particle 
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DENI 

DI 

DS 

IDS 

RATIO 

Denominator of range calculation if ions 

only decelerate alpha particle 

Range of alpha particle in zone if zone 

goes to infinity and only ions decelerate 

it 

Integration increment 

Number of integration increments within 

current zone 

Relative ratio of deuterium-tritium 

compared to ambient 

15.  Subroutine ELOSS 

Variable 

EE 

El 

FRACE 

FRACI 

SPE 

SPI 

UTHERM 

Definition or Description 

Energy to electrons in kev 

Energy to ions in kev 

Electron term for energy deposition 

Ion term for energy deposition 

Electron term for energy deposition 

Ion term for energy deposition 

Energy of thermal ions 
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Table 15 

Subroutine HTFLX Variables 

Variable 

A 

AER 

AERB 

AERC 

ALP 

Al 

B 

CNUE 

CNUI 

CNUR 

D 

DTDRP 

E 

EDT 

FLUXM 

Definition or Description 

Constant for Coulomb logarithm computation 

Radiation-electron energy transfer coupling 

coefficient 

Bremsstrahlung coupling coefficient 

Compton scatter coupling coefficient 

Fine structure constant 

Constant for bremsstrahlung Gaunt 

factor calculation 

Constant for Coulomb logarithm computation 

Specific heat for electron species 

Specific heat for ion species 

Radiation specific heat 

Constant for coefficient of thermal 

conductivity calculation 

Spatial derivative of temperature 

Electronic charge in esu 

Term e6T for coefficient of thermal 

conductivity calculation 

Constant for equilibration coefficient 

computation 

Heat flux at zone inner radius 
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FLUXP 

G 

HI 

H2 

KP 

KROS 

LAMPOS 

LOGLAM 

MI 

NEP 

NU 

RFLUXM 

RFLUXP 

RHOP2 

RP 

SQTE 

TEP 

TEP72 

TP 

TRP 

TRP3 

TR3 

Heat flux at zone outer radius 

Bremsstrahlung Gaunt factor 

Constant for bremsstrahlung coupling 

coefficient calculation 

Constant for Compton scatter coupling 

coefficient calculation 

Coefficient of thermal conductivity 

Diffusion coefficient for radiation 

Mean free path of photons 

Coulomb logarithm 

Average ion mass 

Electron density 

Equilibration frequency for electron-ion 

energy transfer 

Radiation energy flux at inner zone radius 

Radiation energy flux at outer zone radius 

Square of zone density 

Cell wall radius from center in centimeters 

of zone in loop 

Square root of electron temperature 

Electron temperature in kev of zone in loop 

Electron temperature to 7/2 power 

Average electron temperature over two zones 

Radiation temperature in kev of zone in loop 

Cube of radiation temperature 

Cube of radiation temperature 
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TR4 

ZP 

ZI 

Z2 

Radiation temperature to the fourth power 

Net electronic charge averaged over zones 

i  and  i+1 

Net electronic charge in zone  i+1 

Net electronic charge in zone  i 

Table 16 

Subroutine OUTPUT Variables 

Variable 

DTPLOT 

E1PL0T 

EOPLOT 

HTPLT 

NFP 

OUTPL 

OUTPLOT 

RPLOT 

TPLOT 

VPLOT 

Definition or Description 

Time step in picosec nds 

Energy in kilojoules input by driver 

Energy in kilojoules released by thermo- 

nuclear burn 

Bootstrap heating in kilojoules 

Loop Index • NFUEL + 1 

Cell output in joule? in fuel zones 

Cell output in joules in pusher zones 

Zone radii x.i millimeters 

Total time in nanoseconds 

Cell wall velocity in millimeters per 

nanosecond 
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APPENDIX C 

Derivation of the Coulomb Cross Sections 

for Short and Long Range Collisions 

Figure 16 illustrates the hyperbolic paths of two passing 

particles of equal charge and mass.  It also defines the 

geometry and parameters necessary to this discussion. 

Figure 16.  Hyperbolic Paths of Identical Particles 
in a Coulomb Encounter 
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The asymptotes are in dashed lines, the impact parameter  b 

is defined as the distance of closest approach in the absence 

of other forces, the angular deflection 0  is defined as the 

angle of deviation from the normal path, and the center of 

mass is point A .  The angle ii     is an angle of convenience 

between the asymptote and the line through the actual distance of 

closest approach. Note 

O = <rr- 2V 
(C-l) 

Extending to the case of nonidentical particles, 

(C-2) 

where 

M  is the reduced mass 

v  is the relative velcoity between the particles 

and 1.     and  Z_  are the charge number of the two respective 

particles (Ref 26:122). 

Of interest is the case where 0 = */2  .  From Eq (C-l) 

it is apparent that  0 = IT/2 when $  = TT/4  .  This means 

tan lp = 1  and therefore the impact parameter for a 90° 

deflection, denoted b xs 

be = 
_  z.Zx e 

Mir (C-3) 
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(C-4) 

If one particle is very much larger, the heavier particle may 

be taken as stationary and the relative velocity becomes the 

velocity of incidence of the lighter particle.  Denoting this 

velocity v,  and noting the reduced mass under the condition 

m~ >> m1  can be approximated by m-  because 

-J- + J- c? r*\,      WHEN/ rnv»M, 

In other words, M = m,  .  Thus, Eq (C-3) becomes 

The cross section for such a collision is then 

CS* (C-6) 

(C-5) 

(C-7) O;SR d 7r z> Za e_ 

<T  es TT z* Z» e* (8) 
,c« 

4£, 
where E,  is the energy of the less massive particle in the 

rest frame of the more massive particle. 

To arrive at a cross section for a long range collision, 

consider Figure 17 illustrating a Coulomb collision in which 

momentum transfer is small so that particle 1 is basically 
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Figure 17.  Coulomb Collision Assuming Small 
Momentum Transfer Between Interacting 
Particles 

undeflected from straight line motion.  This is essentially 

the picture of an individual long range collision between 

fast particles in the rest frame of particle 2. 

Remember the long range encounter equivalent to a collective 

scatter through an angle of 90° can be described as 

( Ap)
l= P 

a. 
»NIT'AL 

(9) 

The change in momentum for a single interaction, though, is 
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A£ = {fit (C-8) 

Since particle 1 would apply an equal force in both the x 

and  -x directions when integrated over time, Eq (C-8) can 

be reduced to 

Aft •I Y^dt 
(C-9) 

The force is always along the ray r so that Eq (C-9)   can be 

written 

Aft * j  TvMne At 
(C-10) 

From Coulomb's law, this can be expressed 

Aft s r   5*g» e A^\ a it 

Note from Figure 17 ,  r sin 0 , so this becomes 

co 

(C-ll) 

*h » £iZl e    \ 4**%ei'l (c-12) 

If v = dx/dt  is the velocity of particle 1, and noting that 

p = -x tan 0  , then 

At  «  - ^^ & ^B 
nJ

' CC-13) 
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Substituting this into Eq (C-12) results in 

fa (C-14) 

or 

irb (C-15) 

In a  large collection of particles where    N    collisions 

occur,   however,   the  total momentum charge will be 

*h =  T (*?A (C-16) 

If the distribution of particles is isotropic,  Ap  will 

always be zero in a large collection of particles.  The 
  2 

quantity  (Ap)•  , however, will almost certainly be non- 

zero and 

CC-17) 

as all the cross terms will sum to zero.  This can be expressed 

feY = N(Ajs)i (C-18) 

for N collisions.  Realizing that particles can be incident 

from any angle and not simply along the x axis, this can 
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be extended to 

2 

(C-19) 

so that 

i (Äpy = (Zf\ J u 
(C-20) 

2 2 and  (Ap)•  may be taken as  (Ap )   as only magnitudes are 

being considered. 

The number of encounters with an impact parameter 

between b and b + dp per second depend on the number 

density of the interacting test particles and their average 

energy or velocity.  This will be described by a cylindrical 

shell of length X where  X  is the distance traveled from 

one individual collision to the next individual collision or 

the mean free path or 

JM = 2irn?UJl> (C-21) 

Using this in Eq (C-20) results in 

(C-22) 

(C-23) 
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or 

* -r x^4 

J »y-  *\f » Z jy 
(C-24) 

Therefore, integration yields 

4i 
b (C-25) 

*-,*• ** 

(C-26) 

where A = Vbmin . 

Equation (C-26) describes the long range encounter 

equivalent to a 90° scatter when 

(Aff  • ( "»v)* |fW> (C-27) 

The niw-an free path  is  related to  cross  section by 

I a« 
t* 

(C-28) 

or 

<?   . JL 
(C-29) 
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Combining Eqs (C-27) and (C-29) with Eq (C-26) yields 

1    2 
Noting Ei = 2" mlvl 

«U- 
2Tr2,*Z*e4^-A 

F,1 

(C-30) 

(10) 
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APPENDIX D 

Derivation of the Enhancement Factor for Bosons 

A Bose particle is distinguished from a Fermi particle 

by the symmetry of its eigenfunction.  A Fermi particle 

eigenfunction is asymmetric and a Bose particle eigen- 

function is symmetric (Ref 7:411).  As a result, if a Boson 

is introduced to a Bose distribution of similar particles, 

there is an enhanced probability the new Boson will be born 

into a quantum state already populated.  In fact, this 

increased probability is highly dependent on the existing 

quantum state population so that the higher the state popu- 

lation, the higher the increased probability or enhancement 

factor. 

The Bose distribution is given by Eisberg and Resnick 

(Ref 7:432) as 

I 

e     " I (D-l) 

where n(E.)  is the state population 

E-   is the energy corresponding to this state 

and is the species temperature. 

In a dynamic system n(E.)  can be replaced by n(E.) where 

n(E.)  is the average quantum state population or 
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   •   " 

fifa) = -R e*'Ar- / (D-2) 

Now 

n (ft) - J~^ 
I ~ e 

CD-3) 

Thus 

(D-4) 

hto-e    («*KW» (D-5) 

so at a given quantum state 1 

I + n.(£«) 
(D-6) 

At another given quantum state 2 

—: e       =1 
I  + n» (£;) 

(D-7) 

Therefore 
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—r 6 
I -r n (E,L) 

so that 

6 
I + n* (£* ) 

I + FT, (fie) 

(D-8) 

(D-9) 

therefore 

(*»-fciHr   ntfa)(l^ n,(g,c')) 
(D-10) 

or 

•      = (D-ll) 

Ignoring degeneracies, this is the Boltzmann relation 

(Re£ 22:63).  Recall the Boltzmann relation gives the ratio 

of state populations for quantum states characterized by 
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different energies  E,  and  E. Equation (D-ll) shows 

that each state is enhanced by a factor of  1 + n-(E..)  where 

j  is the energy state to which it is being compared.  Given 

a situation near equilibrium then, the enhancement factor is 

1 + n-(E.) .  Referring to Eq (D-2), this can be expressed as 

H n (BI) = 
i 

e*AT-1 
+ I (D-12) 

or 

l+K(£.)>   — 
I 

eAr-< 
+ 

eL/kT-1 
(D-13) 

which  is 
tC/hT 

!+*(*) = -EC Ar - | (D-14) 

or 

| + h (ft) - 
I 

I -  iBiM CD-IS) 

Photons are Bose particles.  The enhancement factor for 

photons born through bremsstrahlung or emitted during a 

Compton process can be written 

I  
(26) I - e 
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where 

E  is the photon energy in the quantum state 

and T  is the radiation temperature. 
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APPENDIX E 

Derivation of Bremsstrahlung 

and Inverse Bremsstrahlung Cross Sections 

The bremsstrahlung cross section for a nonrelativistic 

Coulomb collision is given by Jackson (Ref 15:513) as 

:20) 

where 

Z,  is the charge of the radiating particle 

Zy     is the charge of the particle providing the 

accelerating force 

M  is the mass of the radiating particle 

v  is the velocity of the radiating particle. 

Assuming the radiating particle is an electron so that 

E. • B   , Z, = 1 , and M = m Denoting the charge of the '1  "e  » *1    '        " e 

particle providing the accelerating force as Z and the 

photon energy as hoi =  E  , Eq (20) becomes 

-£v 

(E-l) 

Since the fine structure constant is a   e2/fic  , and the 

classical electron radius r  = e2/m c2  , Eq (E-l) can be 
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—r 

written 

(E-2) 

Multiplying both numerator and denominator by m  and recog 

nizmg 

.Hi."   - _L 
(E-3) 

Eq (E-2) becomes 

if treated  as  a strict  equality which  is   the  form of  the 

bremsstrahlung  cross   section used   in  the  text. 

The   unenhanced bremsstrahlung reaction rate is then 

(31) 

(22) 

where 

n.  is ion number density 

n  is electron number density e ' 

and  v  is their relative velocity or E  in the 

frame of the ion. 

The inverse bremsstrahlung cross section may be derived 
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using this reaction rate and assuming local thermodynamic 

equilibrium.  With this assumption, the principle of detailed 

balance requires the reaction rates of bremsstrahlung and 

inverse bremsstrahlung be equal or 

RRß  " RRI(3 (E-4) 

The inverse bremsstrahlung reaction rate is 

K KIß =• r\i n* (£y)n* (£,-£») c (%$ (ft-ft, ft)   (E.5) 

where 

n (E )  is the photon number density 

and  aTO(E -E ,E )  is the inverse bremsstrahlung Iß  e v vJ b 

reaction rate. 

The ion number density is required as ions are required to 

conserve momentum in the inverse bremsstrahlung process. 

The relative velocity between a photon and an electron must 

be c .  Also, as inverse bremsstrahlung adds  E   to attain 
v 

an electron at energy E  , the electron number density 

of interest is n (E -E )  .  Equating  RR„  and  RRTo  , 
e e v p        ip 

ni n<(£*W(£*) Tp (e*, EJ) = mnvCE^hzCe*-E^c^fe-E^E,,) CE-6) 

and including the enhancement factor 
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For a higher given electron energy, this can be written 

•8) 

The electron energies are in a Maxwellian distribution so that 

the radio of number densities can be expressed 

*(ft«*),  (S)(fe^(^^e" 

ru(*0       \ U   ) 

(E-9). 

(E-10) 

At the new given energy 

<* fc< * •») • #* *£& * (^^) 
Substituting these into Eq (E-8) 

(E-ll) 

*«^***ödte6^WE^ 
(23) 
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The bremsstrahlung and inverse bremsstrahlung add or 

substract to the electron number density  at a given value 

of electron energy,  E   , in four ways.  The number density 

can be increased by bremsstrahlung as an electron originally 

at a higher electron energy,  E +E  » loses energy E  to 

the radiation field.  The number density  can be increased 

by inverse bremsstrahlung as an electron originally at a 

lower electron energy,  Efi~E  > 1S boosted to energy E 

by a photon yielding energy E  . 

The electron population at energy  E  can be decreased 

through both processes also.  Bremsstrahlung occurring with 

an electron originally at energy E  results in an electron 

now at energy E
e"
E
v Inverse bremsstrahlung occurring with 

an electron originally at energy E  results in an electron 

now at  E +E   .  The two processes are shown schematically e v r ' 

adding and subtracting to the electron number density in a 

Maxwellian distribution at a given energy E  in Figure 18. 

In Figure 18 , processes I and II are inverse bremsstrahlung 

and processes III and IV are bremsstrahlung.  In considering 

the additions or subtractions in the number density, the 

bremsstrahlung and inverse bremsstrahlung processes need only 

to be counted once, however, if the distribution function is 

integrated over the entire range of E  . 
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Figure 18 .  Bremsstrahlung and Inverse Bremsstrahlung 
Adding and Subtracting to the Electron 
Number Density 
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APPENDIX F 

Power Densities for Bremsstrahlung 

and Inverse Bremsstrahlung with Gaunt Factors 

The bremsstrahlung reaction rate denisty given in 

Chapter II is 

RR£=*;ne(fiOv-<7s(£.i£v) * (22) 

The only bremsstrahlung process considered is an electron 

reacting to the Coulomb force of an ion.  It also assumes 

the energy of the reaction is the energy of the electron 

relative to the ion. 

To arrive at the reaction rate density for all energies, 

the electron number density and the bremsstrahlung cross section 

must be integrated over the entire range of energies.  The 

electrons' energies are described by a Maxwellian distribution. 

The energy range of particles in a Maxwellian distribution is 

from 0 to infinity, which will be the limits of integration 

for the parameter E  .  The minimum of the resulting photon 

energy is 0 for corresponding to no energy being yielded to 

the radiation field.  The maximum energy yielded to the 

radiation field is the entire energy of the electron or E  . 

The limits of the photon energy Ev then, are 0 to E  , 

which will be the limits of integration for the parameter 
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The electron velocity must be considered in the 

integration of the parameter E 

ITr 

This can be written 

(F-l) 

Also, though, a photon is a Bose particle, so if n 

photons already exist in the radiation field, the bremsstrahlung 

process is enhanced by a factor of 

\       1 
(26) 

Appendix D briefly investigates this enhancement factor. 

With these considerations, Eq (22) becomes 

(24) 

The dimensions are inverse (volume-time). 

The total energy yielded to the radiation field due to 

bremmstrahlung per unit volume per unit time can be attained 

by summing the total energy of each photon created.  This can 

be done by multiplying the reaction rate density by photon 

energy and integrating over the range of possible photon ener- 

gies or 

?,.«j* «fef A JW»*j^£te 
(25) 
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Putting the explicit expressions for the Maxwellian electron 

distribution and the bremsstrahlung cross section into 

Eq (25) results in 

X  3 £,£v [    .rr-  J  (I-***) 

Multiplying and dividing twice by  kTe , substituting for a 

and r  , and reducing yields 

r 3 \Trme j 

-*/* *T, tW/l^ J \dS* '^]tZp^jkTl{¥.Z) 

Useful simplifications can be made by defining 

1       Te 

(29) 

(30) 

(31) 
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Note that 

xf- 
Ee, 

(F-4) 

feTr (F-5) 

By substituting these and further reducing, Eq (F-3) becomes 

In preparation to change variables to x and  £ , note 

*• • tJ (ft) 

«•J (ft) 

(F-7) 

(F-8) 

The new expression is 

r 3  \TTWJ 

* j* Jjfrt, (^^)(;r^)/^(F.9) 
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The upper limit of the inner integral is for the parameter 

i     .  The upper limit is established from the nature of the 

Maxwellian distribution.  Remember £ = E /kTe  so that a 

particle may have a very high energy for a given temperature 

so the upper limit is infinity.  The lower limit of the variable 

x  is illustrated in Figures 19 and 20, graphs of the 

x = E /E  versus the bremsstrahlung cross section, so that 

as a0  *  0 + x •* 1  (Ref 14:512). 
p 

Reordering terms and substituting results in the form 

of the bremsstrahlung power density for a zero radiation 

temperature results in 

?. - n;n< U/i-f2Vr>,c!(kT,)Ä 
p 3 \n,irl 

The inverse bremsstrahlung reaction rate density is 

stated in Chapter II as 

(32) 

Jep /-NCD 

(27) 

The energy limits on the second integral differ as the 

photons are free and are therefore in a Planckian distri- 

bution.  The theoretical maximum energy is then infinity. 

156 



OJ 

V 
CO 

CÜ 

o 
1—I 

t-t o 
ÜJ 
CO 

CO 
CO o 
Cd o 

o 

00 

a 

\ 

a 

\ 

a 

a 

a 

0.0 2.0      4.0      6.0 

ELECTRON ENERGY (KEV) 
8.0 10.0 

Figure 19 .  Bremsstrahlung Cross Section Versus 
(Electron Energy)/ (Thoton Energy) 
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Figure 20.  Bremsstrahlung Cross Section Versus 
(Electron Energy)/(Photon Energy) 
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Similar to the bremsstrahlung power density, the inverse 

bremsstrahlung power density can be written 

(28) 

Substituting explicit expressions into this equation, it 

becomes 

'Jj-e*** 
U»££•*•** JE, 

VE7     /     (F-
10

) 

This becomes 

r 3 vrrm«/ 

after multiplying numerator and denominator by E (kTe) 

Using x ,  5 , and y  from Eqs (29), (30), and (31), and 

noting 
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and 

? 1*0 

(F-12) 

(F-13) 

The limits of the integration over x  can be seen as 

E»  _ -O =^ X = OO 
(F-15) 

and 

(F-16) 

Multiplying the second integral by  -1 and reducing yields 

?xß = o; re 32 LL.\?« r.» m5 c* (kr,)'/l r 3 \mew 

*i:" "(M fTpTw)^(*" '•&>* ' 
(F-17 
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A transformation on the second integral may be performed 

by letting 

*' = X+ I (F-18) 

then 

J*'=  d* (F-19) 

The lower limit becomes 

x =r o -> *' = i (F-20) 

Now 

**,, ^-««.^(ijV^P/w.e^kTO J4 

° • (F-21) 

Realizing    x'     is  simply  a dummy variable  of  integration, 

Eq   (F-21)   can be written 
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33) 

This is the form of inverse bremsstrahlung power density 

for a zero electron temperature.  Note that Eqs (32) and 

(33) are integrated over all energies.  The qualification 

concerning the addition or subtraction of electron numbers 

at a given electron energy is therefore satisfied. 

Equations (32) and (33) can be expressed using a Gaunt 

factor  G(Y).  where j  denotes either pure bremsstrahlung 

or pure inverse bremsstrahlung.  First, Eq (32) may be 

multiplied and divided by  (kTe)7(kTe - kTr)  yielding 

*j {(-^r)iijl-% (tfT^d* 

Note that 

fe-r« 

i-a 

(F-22) 

(F-23) 
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Therefore, the power density for bremsstrahlung only 

adding energy to the radiation field can be stated 

where 

G«V ^{j^yfc'M^^ (35) 

Similarly, the power density for inverse bremsstrahlung 

only taking energy from the radiation field 

* n^^p'^e^.^Ä^W 
(F-24) 

or 

^ - «*¥ [j^***Q$<M*t*'*t 
(36) 
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where 

For practical applications, the power density equations 

must be extended from the limiting cases of either pure 

bremsstrahlung or pure inverse bremsstrahlung to a combina- 

tion of the competing processes.  This may be done by simple 

subtraction.  The net rate of energy flow into the radiation 

field is the energy that goes into this field minus the energy 

that leaves the field per unit time.  This is 

-**?fc^*^^«-»)«0A» 
(F-25) 

Denoting the common coefficient by 

tfr^n^&jW-.tf&F 
(38) 
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Using explicit relationships for the fine structure constant, 

the classical electron radius and number densities, namely 

*    lie 

ft*- 

^* ~ M P ft** -r r 

(F-26) 

(F-27) 

(F-28) 

and 

nc= "H^: (F-29) 

the bremsstrahlung coupling coefficient can be expressed 

(39) 

With this bremsstrahlung coupling coefficient, the power 

density due to bremsstrahlung processes is 

(41) 

Let 

£<7) = 600,-6(4, 
(42) 
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Then referring to Eqs (35) and (37), this is 

GCt)m ^P(T^We^^y?rr)d 

'{(-^Uf) *(*)€*& (^^(iXv- '-/ 
30) 

or 

Ga)--^{ik^^M^^- •<(t-)d 

(F-31) 

Therefore 

cftr)- •<(+-•) 

i-/ 
(44) 

This may be written 

(45) 

where 
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X0~-  \Ä(V*HÄMte"'Vx 

so that 

?/"-/&(*-,-ir,)6O0 

(46) 

(43) 

167 



•"— 

APPENDIX G 

Evaluation of Limiting Values 

of the Bremsstrahlung Gaunt Factor with Model Discussion 

The Gaunt factor for bremsstrahlung may be stated 

-id-i) z«htft(l^)«j>*(^U* 
(44) 

At the limiting value of y  =  0   ,   this becomes 

eM-jWJV&CVT+VxDJ* 
which can be written 

6(0) = ^X (VT+^d Aj tf*<H 

Now 

1 
* 

( i ^i - -j? 

(G-l) 

(G-2) 

(G-3) 

(Ref 11:310).     Therefore, 

c(o). r-LAiJt+sfcr)** (G-4) 
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I 
Integrating by parts yields 

G(o) -- 1 
ZJ, x^VTT? 

d* 

Letting y = x , this becomes 

*<°M>fe^ 
Another substitution using  Z = — results in 

^ " 1 Vl-2 du 

Finally, letting  sin 8 = x yields 

G(o) =    " •—"^ 
Jo VI ~^z© 

(G-5) 

(G-6) 

(G-7) 

(G-8) 

(G-9) 

so 

60) *   1 
(47) 
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At the limiting value of y  = » , the bremsstrahlung Gaunt 

factor is 

fi(a>)a JU C{d{ \% (f^l^€i(^% 
(G-10) 

or 

-*    >! *•+<• ö^iöö"- e(/'>""      (G"U) 

Ignoring all but the first two terms of the series expansion 

for e , this can be written 

Jo   J. **" (i-rt(i-H*//) (G'12' 

Cancelling the factor  5  and applying L'Hospital's rule to 

evaluate the limit, this becomes 

G(cc) -- - j'd A A^-v/^e^O -«')<* * 

The integration of £  can then be done so 

(G-13) 

(G-14) 
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Integrating by parts and inverting the argument of the 

logarithm to get a positive sign yields 

«->-4p"GÜ CG-15) 

Letting ey = (rrrr)  reduces this to 

6(»)-ijgjk* -^a 

A further transformation letting Z = e •y/2 gives 

(G-16) 

(G-17) 

Reference 11 from 4.231.13 has 

1 J»2 
6 

(G-18) 

Therefore 

6C~)*   li %* 

* 
(48) 

The bremsstrahlung Gaunt factor varies, then, between the 

values of  1 and TT
2
/4 .  A numerical integration of G(y) 

was performed using a two dimensional trapezoidal scheme 

described in Reference 13.  This data was fit with the function 
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a/)-y-(?-0e -(o.zr) 
(126) 

Figure 21 is a graph of this function. 

The function G(Y)  presented in Eq (44)  was integrated 

using a two dimensional trapezoidal integration Fcheme. 

Figure 22 is a graph of the results of this integration. 

The integration was designed to attain a minimal grid 

size at the areas of larget G(y)  values.  As a result, 

areas where G(y)  values were very small were neglected. 

Since the integral upper limits are both °° , it is felt the 

neglect of the aforementioned areas account for the low values 

of G(Y)  computed.  The shape is felt to be revealing, 

however, and it is this shape that was duplicated using the 

analytic limits previously discussed. 
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Figure 21.  Bremsstrahlung Gaunt Factor Model versus y 
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APPENDIX H 

Derivation of the Average Energy 

Exchange During a Compton Collision 

The average energy loss of a photon  E   in a collision 

with an electron may be more easily approached by first noting 

Figure 23 t  with the electron initially at rest. 

E.UCCTT150H 

Figure 23.  Symbolic Illustration of Compton 
Scatter with Parameters 

Since energy must be conserved 

(H-l) 
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and  since momentum must  be  conserved 

c (H-2) 

and 

C 
<e<*d ö + p C+4 <f> 

(H-3) 

Multiplying  Eqs   (H-2)   and   (H-3)   by     c    results   in 

£v A*~\ 9 -   fiA^* <f> (H-4) 

and 

Ey =   Ej £+<e + f<-c*4<t> 
(H-5) 

Squaring  these  equations  and  then  adding  yields 

p*C » =  £ * - 2EvEw £*«*© 4 £ 
'Z 

(H-6) 

Equating the two expressions for total energy gives 

(H-7) 

By squaring the two sides and solving for p2c2 , it can 

be written 

i 
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p*cl = E«x + 2F<.rv>ec* 
(H-8) 

Since    E„ =  E  -E'       this  can be  stated e        v    v 

p*C* =   £*-2Ey£v' ••  Ef+ZtAt&fa-Bj) (H-9) 

Equating this to Eq (H-6), 

2 r*cc* (£>,-£*') = 2£vFy 0 -/c~* e) (H-10) 

Now     6E  = E   -E       so  that v     v 

(H-ll) 

This  can be expressed 

(H-12) 

This can be approximated if 6E  is small by 

(H-13) 

This approximation gives values that are somewhat high as 

illustrated by Table 17. 
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Table 17 

Values of 5E Computed 

Using Equations (H-12) and (H-13) 

6E from 6E from 
E (kev) vv  * Eq 13 (kev) Eq 12 (kev) %   Error 

1 8.6264 x 10"4 8.6189 x 10"4 0.09 % 

5 2.0862 x 10"2 2.0776 x 10"2 0.53 % 

10 8.0668 x 10"2 8.0023 x 10"2 0.81 % 

20 3.1169 x 10"1 3.0000 x 10"1 3.90 i 

The electron energies used to compute Table 17 are average 

electron energies corresponding to average scattering angles. 

Average scattering angles are taken from a graph in Evans 

(Ref 8:691). 

Typical radiation temperatures in a thermonuclear plasma 

can be expected to be on the order of 1 kev (Ref 9:475). 

The error introduced by Eq (H-13) should not then be signi- 

ficant. 

Equation (H-13) gives the energy gain by an electron at 

a given angle.  The average energy gain may be found by 

integrating over angles.  The Thomson cross section has an 

angular dependence of  (1 + cos20)  so this factor must be 

included in the integration.  This is stated 
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<*> • & ^ ;  

or 

r17 

*]tC
l  rTT 

The upper limit of integration is the maximum angle of 

scatter.  Letting cos© = x 

"-I 

j (**) 

ri     C(i-x+xl-x*)c!;c 

^1 
>J: 
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(H-14) 

(H-15) 

(H-16) 

(H-17) 



'— —'• m         

<cr£> • *c* TiTÖ (Vs) 
(H-18) 

Therefore 

£v 

<*>" ^ 
(54) 
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APPENDIX I 

Derivation of the 

Compton Coupling Coefficient 

The reaction rate density from Chapter II for Compton 

collisions assuming electrons at rest and photon energies 

such that E  << m c2  is v    e 

I 
R Rc = ne ny (£v) <rT c~—„^/kTf (53) 

Using the average energy lost to the electrons from the 

photon during a Compton collision (Appendix H) is 

< K> - (54) 

The power going to electrons from photons per unit volume 

is then 

(55) 

No integration is done over electron energy as the electrons 

are assumed to be at rest.  The Planckian photon energy 

distribution is 
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MM* -rqr  e'"Arr-i (i-i) 

and the Thomson cross section is 

0? » ftra1 (50) 

With these, the Compton power density is 

p-n f  e7r£tf   -r!—   £irr.lc-£*-  —T^Tv 
(1-2) 

so 

MiTr 

Multiplying and dividing by  (kTr)5  and noting 

re    3 tr Uc/ MC<:2 °)     / ***_ lY   \kTrl 

(1-3) 

Ä.  =   2irh 

(e**-0 
Letting    y =  Ev/kTr     ,  then 

(1-4) 

(57) 
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The integral 

(1-5) 

Now 

I CO 

(1-6) 

so 

fel* (s *-;* (1-7) 

which is 
Z    oo 

.-1 I - e v     J^O 
= Z(j*.)e 

-jy 
(1-8) 

The integral then is 

I CD -r-jy • j?>^J")V<<a 
(1-9) 

Denoting the integral I 

(i-io) 
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CD 

x"5 mJ e ^[""^M 
© 

This   is  equivalent  to 

Now 
Ob 

(Ref 1:807), and 

i CO 

j   e-VJ* s +•' 

(Ref 11:310).  Therefore the integral is 

4l£ -   ±lr+ 
<?0 Iff 

(I-ll) 

(1-12) 

£7  44        <?0 (i-i3) 

(1-14) 

(1-15) 

Integrals similar to this are discussed in Reference 23, 

Appendix A-ll. 

The Compton power density reduces to 
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This refers again to  electrons at rest or pure Compton 

scatter. 

The calculation for inverse Compton scatter 

interactions     will not be included in this report.  Inverse 

Compton requires that the electron have non-zero kinetic 

energy prior to incidence with the photon.  The calculation 

first requires a transformation to the rest frame of the 

electron.  The energies of the incident and emerging photons 

are also transformed in the electron rest frame.  Rates are 

calculated in this reference frame and transformation back to 

the original frame is required.  The result is (Ref 20) 

Pre = Ü ** QX&L  r.*(kTr)*(kTe) 
(59) 

This equation represents pure inverse Compton scatter. 

The net flow of energy from electrons to radiation can 

be found by subtracting the power from radiation to electrons 

due to Compton scatter from the power from electrons to 

radiation due to inverse Compton scatter or 

P?ET = PT„ - P„ (60) c      Ic   c 
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Inserting Eqs (58) and (59) for Pjc and  Pc 

p««r = nv>(j£g!i.r*(kTry(kT,-l*) 
4S      \f»c/ fy\ec

z     N (6i) 

The coupling coefficient for Compton scatter then can be 

written 

(62) 

By multiplying and dividing by the Stephan-Boltzmann 

constant, namely 

,5      L* 

(5   h*Cl (1-16) 

the Compton coupling coefficient can be written 

Ac
c
f = ip-trcr J^ r-Tr+ -   '1L 

3 mcc* 
(1-17) 

Using  the relations 

n„    =    Zn. (1-18) 

ni T p (1-19) 
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and 

mec 

the Compton coupling coefficient may be expressed 

Acr ~ 
28 *r£ftN*(i)*r* 

(1-20) 

(63) 
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APPENDIX J 

Derivation of the Lagrangian Energy Equation Form 

Used in the MOXNEX Code with Source Term and Specific Heat Comments 

Reference 12 gives the Lagrangian form of the mass, 

momentum, and energy equations as 

= O 

T>* ar = o 

(J-l) 

(J-2) 

(J-3) 

where 

(J-4) 

and 

p is mass per unit volume 

v is species velocity 

t is time 

r is length 

P is pressure 

Ew is total species energy per unit mass. 

Multiplying the momentum equation by v yields 
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6r  *   {>    jr 
<\riv + vxi2£+'2£zjL-o CJ-S] 

Expanding  the   last  derivative   in  the   energy  equation  and 

subtracting  Eq   (J-5)   results   in 

<J* dr ^r 
j£m  _ OJ* Jv _ v JV ^ ? c)v 

<**       f <>r 
(J-6) 

The total energy per unit mass can be written 

E„ = T+if* (J-7) 

where  I  is the random thermal or heat energy.  Note that 

(J-8) 

or 

d* 

m 
(J-9) 

and that 

Or (}£rv,   _. <HX+^) 
dr Jr 

(J-10) 

so 
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Or £** = uÜ4Tr1^ 
6r dr 6r 

Substituting  these  teTms   into  Eq   (J-6)  yields 

Jt tr        f    dr = O 

If viscosity is included 

_ P+1 jv 

P + a 
Multiplying the mass conservation equation by  •* 

and subtracting gives 

it ir 

Noting  that 

(j-ii) 

(J-12) 

(J-13) 

(J-14) 

(J-15) 

this equation becomes 

Jr + Jr ji . /PilA i£ + teil} is it fJ-16) 
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Now 

and 

Cx   it 

— (»%) ii/ A 
4T . 
it --H) it 

.     Not: Lng 

c 

Eq   (J-16)  may be expressed 

or 

it iV   it'      V       "   «J* 

CJ-17) 

(J-18) 

(J-19) 

(J-20) 

(J-21) 

CJ-22) 

(J-23) 
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(J-24) 

for an ideal gas, so Eq (J-23) may be written 

S-±I-<*««1 (101) 

A source term S may be added so that 

g-itif-^SJ (J-25) 

This source term could be input from a laser, a particle 

beam, or another source of energy. 

Also note that for an ideal gas 

C  =  12.47 Joules/deg-mole 
v 

(J-26) 

(Ref 23:158).  This can be expressed 

Cv - f/part (J-27) 
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APPENDIX L 

Derivation of Equivalent Fermi Temperature Equation 

for Deuterium-Tritium Solid in the Limit of Full Degeneracy 

(Te - 0) 

The mean kinetic electron energy in the full limit 

of degeneracy is 

3 T 3 
2. eM*cc*v*) Ä5€^ 

(K-l) 

where 

T  is the kinetic electron temperature in kev 

and Cr    is the Fermi energy in the limit of full 

degeneracy given by Zel'dovich and Raizer 

(Ref 28:220) as 

(K-2) 

h is Planck's constant in erg-sec 

k is Boltzmann's constant in erg per kev 

in is the electron mass in grams e " 

n is the elctron per cubic centimeter. e r 

Then 

T 2 / I \ / 3 \% *>* A 
2//3 (K-3) 
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"%*«***•) * La * /6<V* (K-4) 

Now 

Mf!«. (K-5) 

since  for  a mix  of hydrogen  50%   deuterium  and   50%   tritium 

A  =  2.5     and     Z  =   1   .     Therefore 

T*dntcUvc) '- (W X lö*)(W X lO,S) f 
V3 (K-6) 

which  is 

TeUW*clttrz) - ^.^X/0-y/3 (102) 

which is the form used in subroutine HYDRO.  This temperature 

represents the minimum temperature attainable for a given 

density. 
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APPENDIX L 

Derivation of the Adiabatic 

Update Equation for Radiation Temperature 

Adiabatic compression or expansion is described by 

P,v/r PXV* CL-1) 

For an ideal gas, an equation of state can be written 

pv- (*-•')r 
(L-2) 

where  I  is internal energy.  If y  = 

adiabatic gas law can be stated 

f,V(V,'/5= 7kV,V2'
/3 

4/3  for photons, the 

(L-3) 

and the equation of state is 

PV= ^T CL-4) 

Combining these 

I,V*.I,W* CL-5) 

or 
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X,= T •(f)' (L-6) 

If V2 = V. + AV  , this becomes 

so that 

X = T, 
|    V/3 

I + 
V, ' 

CL-7) 

CL-8) 

Long division can then be used to evaluate the quotient, and 

if AV << 1  , the internal energy can be expressed 

*•*('-$)* 
CL-9) 

Again with the condition AV << 1  , the binomial theorem can 

be applied resulting in 

X-1.0-S) (L-10) 

The internal energy is related to the radiation temperature 

by 

4<T-r4 

T - nrv 
3C (L-ll 
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so  Eq   (L-10)  can be written 

T^ = T,<M(.-f) (L-12) 

or 

T**.Tn« [<*!*)] 

which is equivalent to 

Tr,.T,r«_pif 
and can be expressed 

T^^m^i '/* 

(L-13) 

(L-14) 

(106) 

for use in an iterative scheme where n denotes iteration 

number. 
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APPENDIX M 

Geometry Models for 

Geometry Subroutines of Subprogram ALPHA1 

The purpose of subroutines XYT3 thorugh XYT9 and 

GETA through GETC in subprogram ALPHA1 is to find the distance 

an alpha particle travels within a zone.  Knowing this dis- 

tance, energy deposition modelling for the zone is done by 

subroutines FINDDS and ELOSS.  This Appendix will briefly 

discuss and illustrate geometry used in subprogram ALPHA1 

(Ref 16). 

The alpha particles born in a zone are assumed to be 

born at zone center.  The angular paths they can take are 

illustrated in Figure 24.  The angular paths are most finely 

divided near  IT/2 . 

Figure 24.  Angular Directions for Alpha Particles 

Leaving the j   Zone 
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Two coordinate systems are used. One is for motion 

from the center of the zone and one is for motion from a 

zone boundary as it crosses the boundary. 

If the angle 0 is  TT/2 , subroutine XYT3 is called, 

The parameter DIST is returned as the distance traveled 

in the zone. 

Figure 25.  Geometry for Subroutine XYT3 
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If the angle  0 is greater than  TT/ 2 but not  IT , 

subroutine XYT4 is called.  Here the alpha particle may 

either intercept the next inner zone or the next outer zone. 

The decision is made on the value of the discriminant of 

the solution of the equation of the line of travel with the 

circle representing the next inner zone.  Subroutines GETA, 

GETB, and GETC are called to compute this discriminant.  If 

the particle path intercepts the next inner zone wall, 

subroutine XYT4A is called. 

Figure 26.  Geometry for Subroutine XYT4 
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Figure 27.  Geometry for Subroutine XYT4A 

If the next outer zone wall is intersected, subroutine 

XYT4B is called.  In both cases, DIST is returned as the 

distance traveled in the zone. 

Subroutine XYT5 is used if angle  0 is  IT .  If the 

center of the microsphere is intercepted, the direction of 

the alpha particle path is reversed and the alpha particle 

begins to travel outward.  Again, DIST is the distance 

traveled in the zone. 
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Figure 28.  Geometry for Subroutine XYT4B 

Figure 29.  Geometry for Subroutine XYT5 
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Subroutine XYT6 is called if angle  9  is  0 .  The 

parameter DIST is seen from Figure 30. 

Figure 3 0.  Geometry for Subroutine XYT6 

If angle 0 is greater than 0 but less than TT/2 , 

subroutine XYT7 is used.  The only possibility for the 

path of the particle is to intercept the wall of the 

next outer zone.  The discriminants of the solution of the 

equation of the line of travel with the circle representing 

the next outer zone are required to compute DIST.  Sub- 

routines GETA, GETB, and GETC provide these. 
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Figure 31.  Geometry for Subroutine XYT7 

Subroutine XYT8 is similar in function to subroutine 

XYT4 but is written for the case where subsequent motion of 

the particle is located on a zone boundary instead of a 

cell center.  In the instance the alpha particle is travel- 

ing inward, it may intersect the next inner zone or the 

next outer zone.  Therefore, subroutines XYT4A and XYT4B 

are used.  Subroutine XYT8 is used only for angles between 

0 and ir . 

If subsequent motion from a cell boundary is at the 

angle IT , subroutine XYT9 is used.  As with subroutine 

XYTS, if the microsphere center is reached the path of the 
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Figure 32.  Geometry for Subroutine XYT8 

Figure 33. Geometry for Subroutine XYT9 
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particle is reversed and the particle begins to travel 

outward.  If the angle 0 is  0 , subroutine XYT6 returns 

the distance in the zone. 

The subroutines GETA, GETB and GETC return the 

coefficients a ,  b , and c from the quadratic equation 

OlX1 + bx+ C ' O 
(M-l) 

These coefficients are 

a- t* 
CM-2) 

CM-3) 

and 

C, » — lj ** —— 
CM-4) 

where 

r.  is the radius of zone r.  or *". , 

x  is the original position of the alpha particle 
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APPENDIX N 

Derivation of the 

Electron Temperature Update Equations 

The random thermal energy possessed by electrons is 

(N-l) 

or 

Er*e=fnftkT;y (N-2) 

In a spherical volume, this may be expressed 

E«e= **(•;'-tf)|iwfcT. (N-3) 

where 

r  is the outside annulus radius 

r  is the inside annulus radius. 

The energy may be calculated knowing the radii of the 

volume element, the electron number in that volume, and 

the electron species temperature.  In a non-equilibrium 

situation, an updated temperature may be calculated using 

the conservation of energy expressed in a flux conserva- 

tive scheme.  In a spherical volume, this can be written 
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fir (r^. O \ n. k rr =   ±,, (r;. „>) | „, k7V 

4'4irc1F-Ai  -4TTr;xl\>* 
CN-3) 

where 

F+  is the outward energy flux 

F_  is the inward energy flux 

At  is the time increment. 

Flux is in energy/area/time.  Figure 34 illustrates the 

flux entering and leaving a spherical volume element. 

Figure 34. Flux Entering and Leaving A 
Spherical Volume Element 
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Fick's law models flux across a gradient using a diffusion 

coefficient  K  and may be stated in one dimension as 
e 

r.-K.(£) 
(N-4) 

so 

F*-«<(£) 
Using  this,   Eq   (N-3)   becomes 

±Tr(r?-r?)l»tkTr   = 4ir(r,»-r.J)|ft.fcT," 

•'+ I»- / 

This can be simplified to 

(N-5) 

(N-6) 

\«MTr-TS)=^Kt%l-r_^l) JVt 
(N-7) 

If 

r;3-nJ = 3r„xdr 

CN-8) 

(N-9) 
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ff- r.1^3r*«Ar CN-10) 

Substituting this with further manipulations  into  Eq   (N-7), 

the  result  is 

7. Ml      _— i\ 

CN-ll) 

Defining 

Ar *V 
(N-12) 

and 

FLUXM= r2Ke — I (N-13) 

this becomes 

Te    = Te + .  (FIMXP - FL 
3r/Arn«k \ 

UXM^At 
(N-14) 

The term n  is in spherical coordinates 

n<- — Us 
v (N-15) 
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which  is 

rv = (N-16) 

or 

ru* 
(4Tr)3r.*Ar 

(N-17) 

Using this result,  Eq   (N-14)  becomes 

rv»i 

hA/e 
(FLUX? - FL^XMjA* 

(N-18) 

This is the equation used to model electron heat conduction 

in subroutine HTFLX of the MOXNEX program. 

Equipartition of energy between the electrons and ions 

is also computed in subroutine HTFLX.  Spitzer describes 

the equipartition of energy between two groups of particles 

in Reference 26, assuming both particle groups have 

Maxwellian velocity distributions, as 

li -"^ 
*e 

% 

(N-19) 

where t   is the time of equipartition.  This may be 

written in finite difference form as 
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*c< 
(N-20) 

Spitzer gives the time of equipartition in Reference 

26 as 

3rv)CM£ ft. 
\Vi 

(N-21) 

where 

m. 
l 

n 

m  is the electron mass 

is the average ion mass 

is the ion number density 

Z  is the charge on the electron 

Z.  is the average charge on the ion 

e  is the unit of electric charge 

is the ratio 

is the average electron temperature 

ei 

T-  is the average ion temperature. 

Since m << m.  and assuming T  is not  << T. , the 
6       1 t- 1 

term T./m.  will contribute insignificantly to the time 

of equipartition and may be disregarded.  Using a frequency 

representation v  = 1/t   , Eq (N-21) becomes 
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8 (2TT)%»V ~zl gi <Z*J~Jl<i 
V« = (N-22) 

Noting the two relations 

Oi - 
A 

(N-23) 

and 

ft»-«  * 

A/* 
(N-24) 

where 

p is the density 

N is Avagadro's number 
a 

A is the ion mass number 

and also that  Ze • 1 , Eq (N-22) may be written 

Vc* = (82) 

Equation   (N-20)  can be written 

TeA^Te% V^O^-T^W (N-25) 

This is the equation used to model equipartition of energy 

between electrons and ions in subroutine HTFLX of the 

MOXNEX code. 
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APPENDIX 0 

Derivation of the Radiation Temperature Update Equations 

The energy in a radiation field is 

Erf *  l^Tr4V (0-1) 

where 

a is the Stephan-Boltzmann constant 

c is the speed of light 

T is the radiation temperature 

V is the containing volume. 

The quantity 4o/c  is often denoted as the constant  a or 

E„- *Tc4V •ff (0-2) 

In spherical coordinates, this may be expressed 

Ef,- in(r:-r>)«T< (0-3) 

where 

r+ is the outside annulus radius 

r  is the inside annulus radius. 

The energy may be calculated knowing the radii of the volume 

element and the radiation temperature in the volume.  In a 
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non-equilibrium situation, an updated temperature may be 

calculated using the conservation of energy in a flux 

conservative scheme.  For a spherical volume, this can 

be written 

4  / i     i\    T+fr**}       4 /^i ^\^ -p4(**»} 

(0-4) 

where 

F+  is the outward energy flux at  r+  in 

energy/area/time 

F_  is the negative of the outward energy 

flux at  r_  in energy/area/time 

At  is the time increment = total time n+1 total time n 

Figure 35 illustrates the flux entering and leaving a 

spherical volume. 

Fick's law models flux across a gradient using a 

diffusion coefficient  K  and may be stated in one 

dimension as 

**'**(%) (0-5) 

or 
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Figure 35 .  Flux Entering and Leaving A 
Spherical Volume Element 

r-^OS) (0-6) 

Using this equation  (0-4) becomes 

4(***) 4'<r(^<^-e)«Tr
4("," = +ir(n'-r.')«Tr M 

***(#K'*l-**.'j£\\« (0-7) 

Between each radius increment, the volume is 
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V   • iir(f;3-rj>) (0-8) 

Substituting this with further manipulations into Eq (0-7), 

the result is 

Tr 
« v. \        Ar -r.'K^U* 

(0-9) 

Defining 

(0-10) 

and 

RFLUXM * r/ Kr _*»*!/     ATc 
Ar   r. (0-11) 

this  becomes 

If r «r i-t (£FA.WXP-KF*.WXM)A£ 
(0-12) 

If 
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rt-H -r- r\ Tr    « Tr%ATr 
(0-13) 

or 

A-»«      -r- * ATr = 7>n*'- Tr (0-14) 

then 

Tr4(<Tf
4flV4T;(l,ATr 

(0-15) 

or 

A(*4l)    -—4^ _3<«0 Tr#,M". Tr
4^ = 4 Tr^'Y^-T?) 

(0-16) 

Substituting this  into  Eq   (0-12), 

4Tr
3^(Tr,)-T^l)=    ^ (fifWn-RFU/XMW co-17) 

or 

r      = Tr    -r 

Since 

•••MMi 

— 7- . [KFLmP - RFU/*M)A* 

4*TrM**V* l (0-18) 

Cvr =   If Tr3 

r (0-19) 
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(0-20) 

Then Eq (0-18) becomes 

This is the radiation diffusion term of the radiation 

temperature update equation. 

Now since 

(0-21) 

(85) 

and 

ÜE , 4S£.(T,-Tr) (0-22) 

the electron-radiation energy transfer portion of the 

radiation temperature update equation can be written 

V*' r V 4 >ler /j«. Tf*W 
Cyr V 

(0-23) 
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